GDN:基于图神经网络的多变量时间序列异常检测
2024-09-17 11:03:28作者:平淮齐Percy
项目介绍
GDN(Graph Neural Network-Based Anomaly Detection in Multivariate Time Series)是一个基于图神经网络(GNN)的多变量时间序列异常检测项目。该项目实现了AAAI'21论文《Graph Neural Network-Based Anomaly Detection in Multivariate Time Series》中的算法,旨在通过图神经网络技术,高效地检测多变量时间序列中的异常情况。
项目技术分析
技术栈
- Python:项目代码主要使用Python编写,要求Python版本不低于3.6。
- PyTorch:深度学习框架,版本为1.5.1,用于构建和训练图神经网络模型。
- PyG(PyTorch Geometric):PyTorch的几何深度学习扩展库,版本为1.5.0,用于处理图结构数据。
- CUDA:支持GPU加速,要求CUDA版本为10.2。
安装与运行
项目提供了简单的安装脚本install.sh
和运行脚本run.sh
,用户可以通过这些脚本快速搭建环境并运行示例代码。项目还支持CPU和GPU两种运行模式,用户可以根据硬件配置选择合适的运行方式。
项目及技术应用场景
GDN项目适用于需要对多变量时间序列数据进行异常检测的场景,例如:
- 工业监控:在工业生产过程中,监控多个传感器数据,及时发现异常情况,避免生产事故。
- 网络安全:通过监控网络流量和系统日志,检测潜在的网络攻击或系统故障。
- 金融风控:分析金融市场数据,识别异常交易行为,预防金融欺诈。
项目特点
1. 高效性
GDN利用图神经网络的强大表达能力,能够高效地捕捉多变量时间序列数据中的复杂关系,从而准确地检测异常。
2. 灵活性
项目支持自定义数据集,用户只需按照指定格式准备数据,即可快速应用到自己的业务场景中。
3. 可扩展性
基于PyTorch和PyG,GDN项目具有良好的可扩展性,用户可以根据需求对模型进行进一步的优化和扩展。
4. 开源社区支持
作为开源项目,GDN鼓励社区贡献和反馈,用户可以通过GitHub等平台参与到项目的开发和改进中。
结语
GDN项目为多变量时间序列异常检测提供了一种高效、灵活且可扩展的解决方案。无论你是工业监控、网络安全还是金融风控领域的从业者,GDN都能帮助你更好地应对异常检测的挑战。赶快尝试一下吧!
参考文献
如果你觉得这个项目或我们的研究对你的研究有帮助,请考虑引用我们的论文:
@inproceedings{deng2021graph,
title={Graph neural network-based anomaly detection in multivariate time series},
author={Deng, Ailin and Hooi, Bryan},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={35},
number={5},
pages={4027--4035},
year={2021}
}
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133