Brax项目中倒立双摆环境实现的问题分析与修复
2025-06-29 15:09:32作者:郜逊炳
在强化学习领域,倒立双摆(Inverted Double Pendulum)是一个经典的基准测试环境。Google的Brax物理引擎中也实现了这一环境,但最近发现其实现存在两个关键问题,影响了训练效果和评估准确性。
问题背景
倒立双摆环境的核心目标是控制底部小车,使两个连接在一起的摆杆保持直立状态。环境需要正确计算摆杆末端位置来判断是否失败(termination),并提供合理的奖励信号引导智能体学习。
实现问题分析
1. 摆杆末端位置计算错误
原实现使用以下代码计算第二根摆杆末端位置:
tip = base.Transform.create(pos=jnp.array([0.0, 0.0, 0.6])).do(
pipeline_state.x.take(2)
)
x, _, y = tip.pos
这段代码实际上没有正确反映第二根摆杆末端的位置,导致:
- 环境不会在摆杆倒下时正确终止
- 智能体持续获得健康奖励(+10),即使摆杆已经倒下
- 训练出的策略无法真正平衡双摆系统
2. 奖励计算逻辑缺陷
原实现中,健康奖励(alive_bonus)在每次step都会被添加,即使环境已经应该终止。这与Gymnasium等标准实现不一致,正确的做法应该是:
- 仅当环境未终止时才给予健康奖励
- 终止后只计算距离惩罚和速度惩罚
解决方案
摆杆末端位置计算修正
考虑到Brax需要支持多种物理后端(不只是MJX),不能直接使用Gymnasium的site_xpos方法。正确的实现应该是:
pipeline_state.x.take(2).do(base.Transform.create(pos=jnp.array([0.0, 0.0, 0.6])))
这种计算方式能够:
- 准确反映第二根摆杆末端位置
- 兼容所有Brax物理后端
- 确保环境在摆杆倒下时正确终止
奖励计算逻辑优化
奖励计算应修改为:
done = jnp.where(y <= 1, jnp.float32(1), jnp.float32(0))
reward = (1 - done) * self._alive_bonus - dist_penalty - vel_penalty
这种实现:
- 符合标准强化学习环境设计原则
- 避免在终止状态给予错误的正奖励
- 提供更准确的训练信号
影响与验证
修复后的环境表现出预期行为:
- 当摆杆倒下时,环境正确终止
- 训练出的策略能够真正平衡双摆系统
- 奖励信号准确反映智能体的表现
通过对比修复前后的训练视频可以明显看出差异:
- 修复前:策略无法平衡第二根摆杆,但环境不终止
- 修复后:策略能够平衡两根摆杆,环境在失败时正确终止
总结
正确实现强化学习环境对于算法开发和评估至关重要。Brax倒立双摆环境的这两个问题修复后,能够:
- 提供更准确的终止判断
- 给出更合理的奖励信号
- 确保训练结果的可靠性
这对于基于Brax的强化学习研究和应用开发具有重要意义。开发者在实现自定义环境时,也应注意类似的终止条件和奖励计算问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5