Brax项目中倒立双摆环境实现的问题分析与修复
2025-06-29 23:57:30作者:郜逊炳
在强化学习领域,倒立双摆(Inverted Double Pendulum)是一个经典的基准测试环境。Google的Brax物理引擎中也实现了这一环境,但最近发现其实现存在两个关键问题,影响了训练效果和评估准确性。
问题背景
倒立双摆环境的核心目标是控制底部小车,使两个连接在一起的摆杆保持直立状态。环境需要正确计算摆杆末端位置来判断是否失败(termination),并提供合理的奖励信号引导智能体学习。
实现问题分析
1. 摆杆末端位置计算错误
原实现使用以下代码计算第二根摆杆末端位置:
tip = base.Transform.create(pos=jnp.array([0.0, 0.0, 0.6])).do(
pipeline_state.x.take(2)
)
x, _, y = tip.pos
这段代码实际上没有正确反映第二根摆杆末端的位置,导致:
- 环境不会在摆杆倒下时正确终止
- 智能体持续获得健康奖励(+10),即使摆杆已经倒下
- 训练出的策略无法真正平衡双摆系统
2. 奖励计算逻辑缺陷
原实现中,健康奖励(alive_bonus)在每次step都会被添加,即使环境已经应该终止。这与Gymnasium等标准实现不一致,正确的做法应该是:
- 仅当环境未终止时才给予健康奖励
- 终止后只计算距离惩罚和速度惩罚
解决方案
摆杆末端位置计算修正
考虑到Brax需要支持多种物理后端(不只是MJX),不能直接使用Gymnasium的site_xpos方法。正确的实现应该是:
pipeline_state.x.take(2).do(base.Transform.create(pos=jnp.array([0.0, 0.0, 0.6])))
这种计算方式能够:
- 准确反映第二根摆杆末端位置
- 兼容所有Brax物理后端
- 确保环境在摆杆倒下时正确终止
奖励计算逻辑优化
奖励计算应修改为:
done = jnp.where(y <= 1, jnp.float32(1), jnp.float32(0))
reward = (1 - done) * self._alive_bonus - dist_penalty - vel_penalty
这种实现:
- 符合标准强化学习环境设计原则
- 避免在终止状态给予错误的正奖励
- 提供更准确的训练信号
影响与验证
修复后的环境表现出预期行为:
- 当摆杆倒下时,环境正确终止
- 训练出的策略能够真正平衡双摆系统
- 奖励信号准确反映智能体的表现
通过对比修复前后的训练视频可以明显看出差异:
- 修复前:策略无法平衡第二根摆杆,但环境不终止
- 修复后:策略能够平衡两根摆杆,环境在失败时正确终止
总结
正确实现强化学习环境对于算法开发和评估至关重要。Brax倒立双摆环境的这两个问题修复后,能够:
- 提供更准确的终止判断
- 给出更合理的奖励信号
- 确保训练结果的可靠性
这对于基于Brax的强化学习研究和应用开发具有重要意义。开发者在实现自定义环境时,也应注意类似的终止条件和奖励计算问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210