React-Redux性能优化:避免无限循环更新的正确姿势
在React-Redux应用中,我们经常会遇到"Maximum update depth exceeded"这样的错误提示。这个错误通常意味着组件陷入了无限循环的渲染状态。最近有开发者反馈,在升级React-Redux版本后,原本正常运行的代码突然出现了这个问题。
问题根源分析
问题的核心在于Redux选择器(selector)的错误使用方式。在示例代码中,开发者定义了一个选择器工厂函数selectTest,它每次被调用时都会创建一个新的createSelector实例。这种写法会导致两个严重问题:
-
选择器未被正确缓存:每次组件渲染时都会生成全新的选择器实例,失去了Redux选择器最重要的缓存优化功能。
-
返回新对象触发无限更新:由于每次都是新创建的选择器,它返回的对象引用总是新的,导致依赖该数据的useEffect不断触发状态更新,进而引发组件重新渲染,形成无限循环。
正确的选择器实现方式
在Redux应用中,选择器应该被设计为稳定的、可缓存的形式。以下是改进后的正确写法:
// 正确的做法:将createSelector的调用移出函数体
const selectTest = createSelector(
RootSelector.selectTest,
(state) => ({ test: 1 })
);
// 或者如果需要参数化,应该这样写
const makeSelectTest = () =>
createSelector(
RootSelector.selectTest,
(state) => ({ test: 1 })
);
为什么升级后出现问题
在React-Redux 7.x到9.x的升级过程中,选择器的内部实现和性能优化机制有了显著改进。新版本对选择器的稳定性要求更高,对不当使用方式的容错性降低,这使得原本可能侥幸工作的错误写法在新版本中暴露出了问题。
最佳实践建议
-
选择器应该保持稳定:避免在渲染函数内部创建选择器,应该将其定义在组件外部或使用useMemo进行缓存。
-
参数化选择器的正确写法:如果需要根据参数创建不同选择器,应该使用工厂函数模式,确保相同参数返回相同的选择器实例。
-
返回值的优化:尽量保持选择器返回值的引用稳定,对于对象类型,可以考虑使用reselect提供的memoize函数进行深度比较。
-
性能监控:使用React DevTools和Redux DevTools监控选择器的执行情况和组件渲染次数,及时发现潜在的性能问题。
通过遵循这些最佳实践,开发者可以避免无限循环更新的问题,同时充分发挥React-Redux的性能优势,构建高效稳定的应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00