BoTorch中如何自定义高斯过程模型的先验分布
2025-06-25 18:38:31作者:董斯意
概述
在贝叶斯优化框架BoTorch中,高斯过程模型(SingleTaskGP)是核心组件之一。合理设置模型的先验分布对于优化效果至关重要。本文将详细介绍如何在BoTorch中自定义高斯过程模型的各种先验分布参数。
先验分布的基本概念
在贝叶斯统计中,先验分布代表了我们在看到数据之前对模型参数的信念。BoTorch默认使用Gamma分布作为长度尺度(lengthscale)、输出尺度(outputscale)和噪声(noise)的先验分布。
自定义核函数先验
BoTorch默认使用Matern核函数,我们可以通过以下方式自定义其参数先验:
from gpytorch.kernels import MaternKernel, ScaleKernel
from gpytorch.priors.torch_priors import GammaPrior
covar_module = ScaleKernel(
base_kernel=MaternKernel(
nu=2.5, # Matern核函数的平滑度参数
ard_num_dims=d, # 自动相关性确定(ARD)维度
lengthscale_prior=GammaPrior(3.0, 6.0), # 长度尺度先验
outputscale_prior=GammaPrior(2.0, 0.15) # 输出尺度先验
)
其中GammaPrior的两个参数分别是浓度(concentration)和速率(rate)参数,它们控制着分布的形状和尺度。
自定义噪声先验
噪声先验通过高斯似然函数(GaussianLikelihood)设置:
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.constraints import GreaterThan
noise_prior = GammaPrior(1.1, 0.05)
likelihood = GaussianLikelihood(
noise_prior=noise_prior,
noise_constraint=GreaterThan(1e-4) # 噪声下限约束
完整模型构建示例
结合上述组件,我们可以构建完整的自定义先验模型:
model = SingleTaskGP(
train_X=init_x,
train_Y=init_y,
input_transform=Normalize(d=d),
outcome_transform=Standardize(m=m),
covar_module=covar_module,
likelihood=likelihood
)
批次形状(batch_shape)说明
在BoTorch中,batch_shape表示模型的批次维度:
- 当处理单输出(m=1)时,batch_shape与输入数据的批次维度相同
- 当处理多输出(m>1)时,batch_shape会额外增加一个输出维度
BoTorch内部会自动从训练数据的形状推断出合适的batch_shape。
先验选择建议
- 长度尺度先验:通常选择较小的速率参数,使分布偏向较大的值
- 输出尺度先验:根据目标函数的预期幅度调整
- 噪声先验:根据测量误差的预期大小设置
合理设置这些先验可以帮助模型更好地收敛,避免过拟合或欠拟合问题。
总结
BoTorch提供了灵活的先验设置机制,允许用户根据具体问题定制高斯过程模型。理解并合理设置这些先验参数是使用贝叶斯优化的重要环节。通过本文介绍的方法,用户可以轻松地自定义模型的各个先验分布,从而获得更好的优化效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147