BoTorch中如何自定义高斯过程模型的先验分布
2025-06-25 14:00:41作者:董斯意
概述
在贝叶斯优化框架BoTorch中,高斯过程模型(SingleTaskGP)是核心组件之一。合理设置模型的先验分布对于优化效果至关重要。本文将详细介绍如何在BoTorch中自定义高斯过程模型的各种先验分布参数。
先验分布的基本概念
在贝叶斯统计中,先验分布代表了我们在看到数据之前对模型参数的信念。BoTorch默认使用Gamma分布作为长度尺度(lengthscale)、输出尺度(outputscale)和噪声(noise)的先验分布。
自定义核函数先验
BoTorch默认使用Matern核函数,我们可以通过以下方式自定义其参数先验:
from gpytorch.kernels import MaternKernel, ScaleKernel
from gpytorch.priors.torch_priors import GammaPrior
covar_module = ScaleKernel(
base_kernel=MaternKernel(
nu=2.5, # Matern核函数的平滑度参数
ard_num_dims=d, # 自动相关性确定(ARD)维度
lengthscale_prior=GammaPrior(3.0, 6.0), # 长度尺度先验
outputscale_prior=GammaPrior(2.0, 0.15) # 输出尺度先验
)
其中GammaPrior的两个参数分别是浓度(concentration)和速率(rate)参数,它们控制着分布的形状和尺度。
自定义噪声先验
噪声先验通过高斯似然函数(GaussianLikelihood)设置:
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.constraints import GreaterThan
noise_prior = GammaPrior(1.1, 0.05)
likelihood = GaussianLikelihood(
noise_prior=noise_prior,
noise_constraint=GreaterThan(1e-4) # 噪声下限约束
完整模型构建示例
结合上述组件,我们可以构建完整的自定义先验模型:
model = SingleTaskGP(
train_X=init_x,
train_Y=init_y,
input_transform=Normalize(d=d),
outcome_transform=Standardize(m=m),
covar_module=covar_module,
likelihood=likelihood
)
批次形状(batch_shape)说明
在BoTorch中,batch_shape表示模型的批次维度:
- 当处理单输出(m=1)时,batch_shape与输入数据的批次维度相同
- 当处理多输出(m>1)时,batch_shape会额外增加一个输出维度
BoTorch内部会自动从训练数据的形状推断出合适的batch_shape。
先验选择建议
- 长度尺度先验:通常选择较小的速率参数,使分布偏向较大的值
- 输出尺度先验:根据目标函数的预期幅度调整
- 噪声先验:根据测量误差的预期大小设置
合理设置这些先验可以帮助模型更好地收敛,避免过拟合或欠拟合问题。
总结
BoTorch提供了灵活的先验设置机制,允许用户根据具体问题定制高斯过程模型。理解并合理设置这些先验参数是使用贝叶斯优化的重要环节。通过本文介绍的方法,用户可以轻松地自定义模型的各个先验分布,从而获得更好的优化效果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
724
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460