Valibot 中的多值验证:values 和 notValues 的实现与应用
Valibot 是一个强大的 TypeScript 数据验证库,最近在 1.0.0-rc.1 版本中新增了 values 和 notValues 验证器,为开发者提供了更灵活的数据验证能力。本文将深入探讨这一新特性的实现原理和使用场景。
多值验证的需求背景
在实际开发中,我们经常需要验证一个值是否属于一组允许的值(白名单),或者不属于一组禁止的值(黑名单)。虽然 Valibot 之前提供了 .value 和 .notValue 验证器,但它们只能处理单个值的情况,对于多值验证需要开发者自行实现,通常通过以下方式:
- 使用多个
.value或.notValue验证器组合 - 编写自定义的
.check验证逻辑 - 使用正则表达式
.regex验证
这些方法虽然可行,但不够直观且代码冗余。新增的 values 和 notValues 验证器正是为了解决这一问题。
新验证器的特性解析
values 验证器
values 验证器用于确保输入值存在于指定的值列表中,相当于白名单验证。其基本用法如下:
v.pipe(
v.string(),
v.values(['admin', 'editor', 'viewer'], '角色必须是预定义值之一')
);
notValues 验证器
notValues 验证器则相反,确保输入值不在指定的值列表中,相当于黑名单验证。例如:
v.pipe(
v.number(),
v.notValues([0, 8080, 3000], '端口号不能是保留端口')
);
技术实现细节
从实现角度看,这两个验证器底层都是基于数组的 includes 方法进行判断:
values验证器:allowedValues.includes(input)notValues验证器:!disallowedValues.includes(input)
这种实现方式简洁高效,同时保持了与 JavaScript 原生方法的一致性。
特殊值的处理
值得注意的是,这两个验证器对特殊值的处理遵循 JavaScript 的严格相等比较(===)规则:
NaN的处理:由于NaN === NaN在 JavaScript 中总是返回 false,因此values和notValues无法直接用于NaN的验证。对于这种情况,仍然需要使用专门的.check验证器:
v.check(i => !Number.isNaN(i), '必须是一个有效数字')
- 对象和数组的比较:由于对象和数组是通过引用比较的,这两个验证器不适合用于复杂对象的验证。
实际应用场景
表单输入验证
在处理表单输入时,我们经常需要验证用户输入是否符合预定义的选项:
const roleSchema = v.pipe(
v.string(),
v.values(['admin', 'editor', 'viewer'], '无效的角色类型')
);
API 参数验证
在 API 开发中,可以用 notValues 验证器来防止使用保留值:
const portSchema = v.pipe(
v.number(),
v.notValues([0, 80, 443], '不能使用系统保留端口')
);
类型安全的替代方案
Valibot 还提供了类型更安全的替代方案,如 picklist 或 literal 与 union 的组合:
const roleSchema = v.union([
v.literal('admin'),
v.literal('editor'),
v.literal('viewer')
]);
这种方法能提供更精确的 TypeScript 类型推断,适合在类型安全要求高的场景使用。
最佳实践建议
- 对于简单的值列表验证,优先使用
values和notValues,它们语法简洁,易于理解 - 当需要精确的类型推断时,考虑使用
picklist或literal组合 - 对于
NaN等特殊值的验证,使用专门的.check验证器 - 在处理用户输入时,考虑将字符串输入转换为目标类型后再验证
总结
Valibot 新增的 values 和 notValues 验证器为开发者提供了更便捷的多值验证方式,简化了常见验证场景的代码编写。理解这些验证器的特性和适用场景,能够帮助开发者构建更健壮、更易维护的数据验证逻辑。在实际项目中,应根据具体需求选择合适的验证策略,平衡代码简洁性和类型安全性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00