使用pomegranate计算贝叶斯网络的边际概率分布
2025-06-24 00:26:03作者:滑思眉Philip
概述
pomegranate是一个功能强大的概率图模型库,特别适用于构建和分析贝叶斯网络。本文将详细介绍如何使用最新版本的pomegranate计算贝叶斯网络中节点的边际概率分布,以及如何正确设置条件概率表(CPT)。
边际概率计算
在旧版pomegranate中,可以直接使用marginal()方法计算节点的边际概率。而在新版中,我们需要通过以下方式实现:
- 创建贝叶斯网络结构
- 使用掩码张量表示未知变量
- 调用
predict_proba方法获取概率分布
import numpy as np
import torch
from pomegranate import *
# 定义节点概率分布
a = Categorical([[0.1, 0.85, 0.05]])
b = Categorical([[0.2, 0.8]])
# 定义条件概率表(注意额外的维度包装)
probs = np.array([[
[[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]],
[[0.4, 0.4, 0.2], [0.3, 0.2, 0.5]],
[[0.1, 0.7, 0.2], [0.6, 0.1, 0.3]]
]])
c = ConditionalCategorical(probs=probs)
model = BayesianNetwork([a, b, c], [(a, c), (b, c)])
# 使用掩码张量表示未知变量(-1表示未知)
X = torch.tensor([[-1, -1, -1]])
X_masked = torch.masked.MaskedTensor(X, mask=X >= 0)
# 计算边际概率
result = model.predict_proba(X_masked)
条件概率表设置
在设置条件概率表时,需要注意维度匹配问题。条件概率表的维度应该为:
[1, 父节点1状态数, 父节点2状态数, ..., 当前节点状态数]
对于有多个父节点的情况,例如节点d有三个父节点(a,b,c),其条件概率表应该设置为四维数组:
d_probs = np.array([[
[
[[0.62, 0.35, 0.03], [0.24, 0.61, 0.15]],
[[0.55, 0.37, 0.08], [0.11, 0.52, 0.38]]
],
[
[[0.58, 0.42, 0.0], [0.16, 0.84, 0.0]],
[[0.51, 0.50, 0.0], [0.01, 0.99, 0.0]]
],
[
[[0.58, 0.35, 0.08], [0.16, 0.47, 0.38]],
[[0.51, 0.31, 0.19], [0.01, 0.05, 0.94]]
]
]])
实用技巧
- 维度自动调整:可以使用reshape方法根据网络结构自动调整概率表维度
shape = [1]
for parent in node.parents:
shape.append(parent.state_count)
shape.append(node.state_count)
probs = np.array(raw_probs).reshape(shape)
- 变量命名:为节点设置名称便于调试
node.name = 'variable_name'
- 结果解释:predict_proba返回的是各节点的概率分布列表,顺序与网络定义一致
常见问题解决
- 形状错误:确保条件概率表的维度与父节点数量匹配
- 概率归一化:每行概率和应为1
- 节点顺序:构建网络时注意父节点应在子节点之前定义
通过正确设置网络结构和概率表,pomegranate可以高效地计算复杂贝叶斯网络的边际概率分布,适用于各种概率推理任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355