在Deep-Chat项目中实现消息推荐按钮的技术方案
背景介绍
Deep-Chat是一个功能强大的聊天组件库,开发者可以通过配置实现各种定制化的聊天界面效果。本文将详细介绍如何在Deep-Chat中实现位于输入框上方的推荐按钮功能,这种设计常见于智能客服系统或AI助手应用中,用于引导用户快速发起常见问题咨询。
核心实现原理
实现这一功能的关键在于巧妙利用Deep-Chat的消息样式配置和角色定义系统。通过为特定类型的消息定义自定义样式,我们可以控制其显示位置和外观,使其固定在输入框上方而非传统的消息流中。
具体实现步骤
1. 定义消息样式
首先需要配置messageStyles属性,为推荐消息创建特殊的样式规则:
chatElementRef.messageStyles = {
html: {
recommendation: { // 自定义角色名称
outerContainer: {
position: 'absolute', // 绝对定位
bottom: '60px', // 距离底部60px
},
bubble: {
backgroundColor: 'unset', // 透明背景
padding: '0px', // 无内边距
},
},
},
};
这段代码定义了一个名为"recommendation"的自定义消息角色,将其定位方式设为绝对定位,并放置在距离底部60px的位置,同时移除了默认的消息气泡样式。
2. 创建推荐按钮消息
接下来,通过initialMessages属性初始化包含推荐按钮的HTML内容:
chatElementRef.initialMessages = [
{
html: `
<div class="deep-chat-temporary-message">
<button class="deep-chat-button deep-chat-suggestion-button" style="margin-top: 5px">虾吃什么?</button>
<button class="deep-chat-button deep-chat-suggestion-button" style="margin-top: 6px">虾会炒饭吗?</button>
<button class="deep-chat-button deep-chat-suggestion-button" style="margin-top: 6px">什么是特殊虾种?</button>
</div>`,
role: 'recommendation', // 使用自定义角色
},
];
这里使用了Deep-Chat内置的按钮样式类(deep-chat-button和deep-chat-suggestion-button)来保持界面风格一致,同时为每个按钮添加了上边距以形成垂直排列。
技术要点解析
-
自定义消息角色:通过定义非标准角色(如这里的"recommendation"),我们可以为特定类型的消息创建独特的显示规则。
-
绝对定位技巧:将消息容器设为绝对定位是关键,这使得消息可以脱离常规的消息流,固定在指定位置。
-
样式覆盖:通过设置backgroundColor为unset和padding为0px,我们移除了默认的消息气泡样式,使推荐按钮能够以更自然的方式呈现。
-
HTML内容注入:使用html属性可以直接注入自定义HTML结构,提供了极大的灵活性。
进阶应用建议
-
动态更新推荐:可以通过API动态获取推荐问题列表,然后更新initialMessages实现内容动态变化。
-
交互响应:为按钮添加点击事件处理,当用户点击推荐问题时自动填充到输入框或直接发送。
-
条件显示:可以结合业务逻辑,只在特定场景(如用户长时间未输入)显示推荐按钮。
-
样式定制:进一步自定义按钮样式以匹配应用主题,如修改颜色、圆角、悬停效果等。
兼容性说明
需要注意的是,此功能需要较新版本的Deep-Chat组件(9.0.155或更高),开发者可能需要使用开发版包(deep-chat-dev或deep-chat-dev-react)来获取完整的样式配置支持。
总结
通过Deep-Chat强大的样式配置和消息系统,开发者可以灵活实现各种定制化的聊天界面效果。本文介绍的推荐按钮实现方案不仅适用于问题推荐场景,其原理也可应用于其他需要固定位置显示辅助内容的场景,如快捷操作栏、上下文提示等。这种实现方式既保持了Deep-Chat的核心功能,又扩展了其应用可能性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00