数据验证工具data.validator使用教程
2025-04-17 02:00:35作者:殷蕙予
1. 项目介绍
data.validator 是一个用于可扩展和可重现数据验证的R包。它提供了一系列功能,可以帮助用户在R的%>%管道中验证数据集,并创建用户友好的报告。这个包包含了以下几个核心功能:
validate_if、validate_cols和validate_rows函数,用于在管道中验证数据集。- 来自
assertr包的断言函数,如in_set、within_bounds等。 - 用于生成可以发送电子邮件、存储在日志文件夹中或通过RStudio Connect自动生成的用户友好报告的函数。
2. 项目快速启动
首先,您需要安装data.validator包。可以通过CRAN仓库安装稳定版本,或者从GitHub安装最新开发版本。
# 安装稳定版本
install.packages("data.validator")
# 安装最新开发版本
remotes::install_github("Appsilon/data.validator")
接下来,让我们通过一个简单的例子来快速启动项目:
library(assertr)
library(magrittr)
library(data.validator)
# 创建报告对象
report <- data_validation_report()
# 准备数据集
mtcars <- mtcars
# 运行验证
validate(mtcars, name = "验证车辆数据集") %>%
validate_if(drat > 0, description = "drat列只有正值") %>%
validate_cols(in_set(c(0, 2)), vs, am, description = "vs和am值只能是0或2") %>%
validate_cols(within_n_sds(1), mpg, description = "mpg值在1个标准差内") %>%
validate_rows(num_row_NAs, within_bounds(0, 2), vs, am, mpg, description = "行中的NA数量不过多") %>%
validate_rows(maha_dist, within_n_mads(10), everything(), description = "马氏距离在10个MAD内") %>%
add_results(report)
# 打印报告
print(report)
3. 应用案例和最佳实践
检查关键列的唯一性
数据验证的常见步骤是确保关键列是唯一的且非空。可以使用fixtuRes包来准备验证模式的测试数据集。
library(fixtuRes)
library(magrittr)
library(assertr)
library(data.validator)
# 创建模拟数据生成器
my_mock_generator <- fixtuRes::MockDataGenerator$new("path-to-my-configuration.yml")
# 获取模拟数据
my_data_frame <- my_mock_generator$get_data("my_data_frame", 10)
# 创建报告对象
report <- data_validation_report()
# 运行验证
validate(my_data_frame, name = "验证数据唯一性") %>%
validate_if(is_uniq(id), description = "ID列是唯一的") %>%
validate_if(!is.na(id) & id != "", description = "ID列非空") %>%
validate_if(is.character(code), description = "CODE列是字符串") %>%
validate_rows(col_concat, is_uniq, code, type, description = "CODE和TYPE组合是唯一的") %>%
add_results(report)
# 打印报告
print(report)
定制报告
data.validator允许将验证结果保存为HTML报告。可以通过修改预定义的RMarkdown模板来自定义报告。
4. 典型生态项目
data.validator可以与RStudio Connect、Shiny等R生态系统中的其他工具配合使用,为生产环境中的数据验证提供保护。例如,可以设置RStudio Connect Scheduler每天运行,从PostgreSQL表加载数据并根据预定义规则进行验证。根据验证结果,可以创建新的data.validator报告,并通过电子邮件发送给数据提供者和负责数据质量的人员。如果数据违反了规则,则数据提供者可以进行必要的修复;如果数据是正确的,则发送一个特定的触发器以重新加载Shiny数据。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
206
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
285
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
635
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873