Seurat V5中多样本SCT标准化与整合的工作流程解析
2025-07-02 22:01:11作者:吴年前Myrtle
背景介绍
在单细胞RNA测序数据分析中,Seurat是最广泛使用的工具之一。随着Seurat V5的发布,其工作流程与之前的V4版本相比发生了一些重要变化,特别是在处理多个样本的SCTransform(SCT)标准化和整合方面。
核心问题
许多从Seurat V4迁移到V5的用户在处理多样本数据时遇到了困惑,特别是在以下方面:
- 合并样本时应该使用RNA还是SCT assay
- 何时进行SCT标准化
- 如何正确设置整合流程
推荐工作流程
1. 样本合并
首先将所有样本合并为一个Seurat对象。在合并时,使用RNA assay即可,因为后续会统一进行SCT标准化。
# 假设OM.list是包含所有样本的列表
OM.merge <- merge(x = OM.list[[1]], y = OM.list[-1])
2. 数据分层
合并后,需要根据实验设计将数据分层。关键点是分层变量应该对应不同的测序批次或技术重复,而不是生物学条件(如疾病状态)。
# 正确的做法是按样本ID分层
OM.merge[["RNA"]] <- split(OM.merge[["RNA"]], f = OM.merge$sample_id)
# 错误的做法是按疾病状态分层
# OM.merge[["RNA"]] <- split(OM.merge[["RNA"]], f = OM.merge$disease)
3. SCT标准化
对分层后的数据进行SCTransform标准化:
OM.all <- SCTransform(OM.merge)
这一步会自动为每个层(即每个样本)拟合单独的负二项式模型,同时保留共同的基因特征空间。
4. 降维与可视化
OM.all <- RunPCA(OM.all)
OM.all <- RunUMAP(OM.all, dims = 1:30)
5. 数据整合
使用Harmony等方法进行批次校正:
OM.all <- IntegrateLayers(
object = OM.all,
method = HarmonyIntegration,
normalization.method = "SCT"
)
6. 聚类分析
OM.all <- FindNeighbors(OM.all, reduction = "harmony", dims = 1:30)
OM.all <- FindClusters(OM.all, resolution = seq(0, 1.5, by = 0.1))
技术要点解析
-
为什么按样本分层而不是按疾病状态?
- 按样本分层可以正确建模不同测序批次的技术变异
- 按疾病状态分层会混淆技术变异和生物学差异
-
V5与V4的主要区别:
- V5使用多层(multi-layer)架构代替了V4中的列表操作
- 工作流程更加线性化,减少了循环操作
- 整合方法直接作用于多层对象
-
SCT标准化的优势:
- 同时处理技术噪声和测序深度差异
- 保留生物异质性
- 适合后续的差异表达分析
常见问题解决
如果在整合后观察到奇怪的聚类模式,可以检查:
- 分层变量是否正确设置
- 是否使用了正确的标准化方法(normalization.method = "SCT")
- PCA和整合使用的维度是否合适
- 分辨率参数是否适合数据集的复杂度
通过遵循上述工作流程,用户可以有效地在Seurat V5中处理多样本单细胞数据,获得可靠的整合结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111