Seurat V5中多样本SCT标准化与整合的工作流程解析
2025-07-02 20:43:42作者:吴年前Myrtle
背景介绍
在单细胞RNA测序数据分析中,Seurat是最广泛使用的工具之一。随着Seurat V5的发布,其工作流程与之前的V4版本相比发生了一些重要变化,特别是在处理多个样本的SCTransform(SCT)标准化和整合方面。
核心问题
许多从Seurat V4迁移到V5的用户在处理多样本数据时遇到了困惑,特别是在以下方面:
- 合并样本时应该使用RNA还是SCT assay
- 何时进行SCT标准化
- 如何正确设置整合流程
推荐工作流程
1. 样本合并
首先将所有样本合并为一个Seurat对象。在合并时,使用RNA assay即可,因为后续会统一进行SCT标准化。
# 假设OM.list是包含所有样本的列表
OM.merge <- merge(x = OM.list[[1]], y = OM.list[-1])
2. 数据分层
合并后,需要根据实验设计将数据分层。关键点是分层变量应该对应不同的测序批次或技术重复,而不是生物学条件(如疾病状态)。
# 正确的做法是按样本ID分层
OM.merge[["RNA"]] <- split(OM.merge[["RNA"]], f = OM.merge$sample_id)
# 错误的做法是按疾病状态分层
# OM.merge[["RNA"]] <- split(OM.merge[["RNA"]], f = OM.merge$disease)
3. SCT标准化
对分层后的数据进行SCTransform标准化:
OM.all <- SCTransform(OM.merge)
这一步会自动为每个层(即每个样本)拟合单独的负二项式模型,同时保留共同的基因特征空间。
4. 降维与可视化
OM.all <- RunPCA(OM.all)
OM.all <- RunUMAP(OM.all, dims = 1:30)
5. 数据整合
使用Harmony等方法进行批次校正:
OM.all <- IntegrateLayers(
object = OM.all,
method = HarmonyIntegration,
normalization.method = "SCT"
)
6. 聚类分析
OM.all <- FindNeighbors(OM.all, reduction = "harmony", dims = 1:30)
OM.all <- FindClusters(OM.all, resolution = seq(0, 1.5, by = 0.1))
技术要点解析
-
为什么按样本分层而不是按疾病状态?
- 按样本分层可以正确建模不同测序批次的技术变异
- 按疾病状态分层会混淆技术变异和生物学差异
-
V5与V4的主要区别:
- V5使用多层(multi-layer)架构代替了V4中的列表操作
- 工作流程更加线性化,减少了循环操作
- 整合方法直接作用于多层对象
-
SCT标准化的优势:
- 同时处理技术噪声和测序深度差异
- 保留生物异质性
- 适合后续的差异表达分析
常见问题解决
如果在整合后观察到奇怪的聚类模式,可以检查:
- 分层变量是否正确设置
- 是否使用了正确的标准化方法(normalization.method = "SCT")
- PCA和整合使用的维度是否合适
- 分辨率参数是否适合数据集的复杂度
通过遵循上述工作流程,用户可以有效地在Seurat V5中处理多样本单细胞数据,获得可靠的整合结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1