Requests库中生成器函数实现分块上传的注意事项
Requests是Python中广泛使用的HTTP客户端库,在处理大文件上传时,使用生成器函数实现分块传输编码(Chunked Transfer Encoding)是一种高效的内存优化方案。然而在实际使用中,开发者需要注意一些关键细节才能正确实现这一功能。
生成器函数的基本用法
Requests库支持通过生成器函数来实现分块上传,这种方式特别适合处理大文件或动态生成的数据流。基本用法是将生成器函数作为data参数传递给请求方法:
def generate_data():
yield b"第一部分数据"
yield b"第二部分数据"
response = requests.put(url, data=generate_data())
常见问题分析
在实际开发中,开发者经常会遇到两个典型问题:
-
数据类型不匹配错误:在较旧版本的Requests(2.28.x及以下)中,生成器必须返回bytes类型数据。如果返回str类型,会抛出"memoryview: a bytes-like object is required, not 'str'"错误。
-
生成器实现不当:在Python中,生成器函数使用yield返回数据,不能使用return语句返回最终数据(除非作为StopIteration的value)。不正确的实现会导致数据不完整。
解决方案
对于数据类型问题,有两种解决方法:
-
升级Requests版本:2.29.0及以上版本已经修复了bytes类型的限制,可以更灵活地处理数据。
-
确保返回bytes:在旧版本中,可以显式编码字符串:
def generate_data():
yield '{"field": "value",'.encode('utf-8')
yield '"field2": "value2"}'.encode('utf-8')
对于生成器实现问题,需要理解生成器的工作机制。在Python中,生成器函数通过yield产生值,return语句仅用于结束生成器(可以附带一个值作为StopIteration异常的值)。因此,所有需要发送的数据都应该通过yield产生。
最佳实践建议
-
明确数据类型:无论使用何种版本,显式处理数据编码是最稳妥的做法。
-
测试数据完整性:确保生成器产生的所有数据都被正确发送,可以使用简单的字节计数验证。
-
考虑兼容性:如果代码需要在不同环境中运行,应该检查Requests版本并做相应处理。
-
错误处理:在生成器内部添加适当的异常处理,避免上传过程中出现意外中断。
通过遵循这些准则,开发者可以充分利用Requests的分块上传功能,高效处理大文件传输任务,同时避免常见的陷阱和错误。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









