Denoising Diffusion PyTorch 项目教程
2024-08-24 20:25:44作者:贡沫苏Truman
项目介绍
Denoising Diffusion PyTorch 是一个基于 PyTorch 实现的 Denoising Diffusion Probabilistic Model(去噪扩散概率模型)。该模型是一种新的生成模型方法,具有与生成对抗网络(GANs)相媲美的潜力。它通过去噪得分匹配来估计数据分布的梯度,并使用 Langevin 采样从真实分布中进行采样。
项目快速启动
安装
首先,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/rosinality/denoising-diffusion-pytorch.git
cd denoising-diffusion-pytorch
pip install -r requirements.txt
使用示例
以下是一个简单的使用示例,展示了如何加载模型并进行训练:
import torch
from denoising_diffusion_pytorch import Unet, GaussianDiffusion
# 定义模型
model = Unet(
dim=64,
dim_mults=(1, 2, 4, 8),
flash_attn=True
)
# 定义扩散过程
diffusion = GaussianDiffusion(
model,
image_size=128,
timesteps=1000 # 步数
)
# 生成训练图像
training_images = torch.rand(8, 3, 128, 128) # 图像归一化到0到1之间
# 训练模型
loss = diffusion(training_images)
loss.backward()
应用案例和最佳实践
图像生成
Denoising Diffusion PyTorch 可以用于生成高质量的图像。以下是一个生成图像的示例:
# 采样生成图像
sampled_images = diffusion.sample(batch_size=4)
数据增强
该模型还可以用于数据增强,通过生成新的图像样本来扩充训练数据集,从而提高模型的泛化能力。
典型生态项目
Hugging Face Transformers
Hugging Face Transformers 是一个广泛使用的自然语言处理库,可以与 Denoising Diffusion PyTorch 结合使用,以实现更复杂的文本到图像的生成任务。
PyTorch Lightning
PyTorch Lightning 是一个轻量级的 PyTorch 封装库,可以简化训练过程的管理,使得模型训练更加高效和易于管理。
通过结合这些生态项目,可以进一步扩展 Denoising Diffusion PyTorch 的功能和应用范围。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249