3DETR 开源项目使用教程
2024-08-18 00:04:25作者:郦嵘贵Just
项目介绍
3DETR(3D DEtection TRansformer)是一个用于3D点云对象检测的端到端Transformer模型。与传统的复杂手工3D检测流程相比,3DETR提供了一个更简单的替代方案。该项目由Facebook Research开发,旨在简化3D对象检测的实现过程,并提供高效的检测性能。
项目快速启动
环境准备
在开始之前,请确保您的系统已安装以下依赖:
- Python 3.7+
- PyTorch 1.7+
- CUDA 10.1+
安装步骤
-
克隆项目仓库:
git clone https://github.com/facebookresearch/3detr.git cd 3detr -
安装所需的Python包:
pip install -r requirements.txt
训练模型
以下是一个简单的训练命令示例:
python train.py --config config/default.yaml --data_dir path/to/your/data
评估模型
训练完成后,可以使用以下命令进行模型评估:
python eval.py --config config/default.yaml --model_path path/to/your/model
应用案例和最佳实践
应用案例
3DETR在多个领域都有广泛的应用,包括自动驾驶、机器人导航和增强现实等。例如,在自动驾驶中,3DETR可以用于实时检测和识别道路上的障碍物,从而提高驾驶安全性。
最佳实践
- 数据预处理:确保输入的点云数据经过适当的预处理,包括归一化和去噪。
- 超参数调优:根据具体任务调整学习率、批大小和训练轮数等超参数,以获得最佳性能。
- 模型集成:在实际应用中,可以考虑使用多个模型的集成来提高检测的准确性和鲁棒性。
典型生态项目
相关项目
- PyTorch3D:一个用于3D深度学习的PyTorch库,提供了丰富的3D数据处理和渲染工具。
- Open3D:一个开源的3D数据处理库,支持点云、网格和体素等多种3D数据格式。
集成示例
以下是一个简单的示例,展示如何将3DETR与PyTorch3D集成:
import torch
from pytorch3d.structures import Pointclouds
from pytorch3d.transforms import Rotate, Translate
# 加载3DETR模型
model = torch.load('path/to/your/model')
# 创建点云数据
points = torch.randn(1000, 3)
point_cloud = Pointclouds(points=[points])
# 应用变换
R = Rotate(torch.eye(3), device=points.device)
T = Translate(torch.zeros(3), device=points.device)
point_cloud = R.transform_points(point_cloud)
point_cloud = T.transform_points(point_cloud)
# 使用3DETR进行检测
with torch.no_grad():
detections = model(point_cloud)
通过以上步骤,您可以快速上手并应用3DETR进行3D点云对象检测,同时了解其与其他3D深度学习工具的集成方法。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868