Qwen模型推理时attention_mask首位为0导致输出NaN问题分析
2025-05-12 12:33:39作者:谭伦延
问题现象
在使用Qwen-7B-Chat模型进行推理时,当输入的attention_mask张量中第一个位置被置为0(即序列起始位置被mask掉),模型forward函数的输出logits会全部变为NaN值。这种现象在以下场景中尤为明显:
- 进行批量推理时(batch_size > 1)
- 使用不同长度的输入序列进行左填充(left-padding)处理时
- 未启用flash-attn的情况下
技术背景
attention_mask在Transformer模型中用于控制注意力机制的计算范围,通常:
- 1表示该位置参与注意力计算
- 0表示该位置被mask掉,不参与计算
在批量处理不同长度序列时,通常会对较短序列进行填充(padding),并使用attention_mask来屏蔽这些填充位置的影响。
问题分析
经过深入分析,这个问题与以下几个因素相关:
- 模型架构差异:Qwen1.0系列模型存在此问题,而Qwen1.5及后续版本已修复
- PyTorch版本影响:在PyTorch 2.0.1版本下表现正常,但在PyTorch 2.4及以上版本会出现问题
- 注意力实现方式:使用flash-attn可以规避此问题,但原生实现会出现NaN
根本原因可能是:
- 当序列起始位置被mask时,模型的自注意力计算可能产生了数值不稳定
- 在特定PyTorch版本下,矩阵运算的实现方式变化导致了数值溢出的问题
解决方案
针对此问题,推荐以下几种解决方案:
-
升级模型版本:迁移到Qwen1.5或Qwen2.0等后续版本,这些版本已经修复了此问题
-
启用flash-attn:
# 安装flash-attn
pip install flash-attn
# 在代码中启用
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", use_flash_attention_2=True)
-
调整PyTorch版本:降级到PyTorch 2.0.1版本可以临时解决问题
-
修改padding策略:避免使用左填充,或确保序列起始位置不被mask
最佳实践建议
对于生产环境中的使用,建议:
- 优先使用最新的Qwen2.0系列模型
- 保持PyTorch等依赖库的版本更新
- 在批量推理时,尽量保持输入序列长度一致,减少padding需求
- 对于必须使用padding的场景,建议启用flash-attn以获得更好的性能和稳定性
总结
这个问题展示了深度学习模型在实际应用中的一些潜在陷阱,特别是在处理变长序列和注意力掩码时。理解模型的行为、保持框架和模型的更新,以及合理使用优化技术(如flash-attn),都是确保模型稳定运行的重要因素。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492