Qwen模型推理时attention_mask首位为0导致输出NaN问题分析
2025-05-12 15:14:00作者:谭伦延
问题现象
在使用Qwen-7B-Chat模型进行推理时,当输入的attention_mask张量中第一个位置被置为0(即序列起始位置被mask掉),模型forward函数的输出logits会全部变为NaN值。这种现象在以下场景中尤为明显:
- 进行批量推理时(batch_size > 1)
- 使用不同长度的输入序列进行左填充(left-padding)处理时
- 未启用flash-attn的情况下
技术背景
attention_mask在Transformer模型中用于控制注意力机制的计算范围,通常:
- 1表示该位置参与注意力计算
- 0表示该位置被mask掉,不参与计算
在批量处理不同长度序列时,通常会对较短序列进行填充(padding),并使用attention_mask来屏蔽这些填充位置的影响。
问题分析
经过深入分析,这个问题与以下几个因素相关:
- 模型架构差异:Qwen1.0系列模型存在此问题,而Qwen1.5及后续版本已修复
- PyTorch版本影响:在PyTorch 2.0.1版本下表现正常,但在PyTorch 2.4及以上版本会出现问题
- 注意力实现方式:使用flash-attn可以规避此问题,但原生实现会出现NaN
根本原因可能是:
- 当序列起始位置被mask时,模型的自注意力计算可能产生了数值不稳定
- 在特定PyTorch版本下,矩阵运算的实现方式变化导致了数值溢出的问题
解决方案
针对此问题,推荐以下几种解决方案:
-
升级模型版本:迁移到Qwen1.5或Qwen2.0等后续版本,这些版本已经修复了此问题
-
启用flash-attn:
# 安装flash-attn
pip install flash-attn
# 在代码中启用
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", use_flash_attention_2=True)
-
调整PyTorch版本:降级到PyTorch 2.0.1版本可以临时解决问题
-
修改padding策略:避免使用左填充,或确保序列起始位置不被mask
最佳实践建议
对于生产环境中的使用,建议:
- 优先使用最新的Qwen2.0系列模型
- 保持PyTorch等依赖库的版本更新
- 在批量推理时,尽量保持输入序列长度一致,减少padding需求
- 对于必须使用padding的场景,建议启用flash-attn以获得更好的性能和稳定性
总结
这个问题展示了深度学习模型在实际应用中的一些潜在陷阱,特别是在处理变长序列和注意力掩码时。理解模型的行为、保持框架和模型的更新,以及合理使用优化技术(如flash-attn),都是确保模型稳定运行的重要因素。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1