prompt-decorators 的项目扩展与二次开发
2025-06-04 06:19:55作者:龚格成
项目的基础介绍
prompt-decorators 是一个开源项目,旨在通过使用结构化的前缀(称为“提示装饰器”)来增强人工智能(AI)的响应。这些装饰器灵感来源于 Python 的装饰器,允许用户通过简单的提示前缀来修改 AI 的行为,从而无需编写冗长的指令即可标准化和优化 AI 输出。项目的目标是简化与 AI 的交互过程,提高响应的质量和逻辑性。
项目的核心功能
prompt-decorators 的核心功能是提供一系列的装饰器,这些装饰器可以用于指导 AI 生成更加清晰、逻辑和结构化的回答。以下是一些核心功能的示例:
- +++Reasoning:确保在回答之前提供逻辑解释。
- +++StepByStep:将复杂任务分解为步骤。
- +++Socratic:通过提问促进批判性思维。
- +++Debate:生成多种观点。
- +++Critique:在改进之前分析优点和缺点。
- +++Refine(iterations=N):通过多次迭代优化回答。
- +++CiteSources:确保 AI 包含引用来源。
- +++FactCheck:优先验证事实的准确性。
项目使用了哪些框架或库?
该项目主要使用了 Python 作为编程语言,并且可以与各种 AI 模型和框架配合使用。prompt-decorators 本身不依赖于特定的 AI 框架,但它是为了与大型语言模型(LLM)和生成式 AI 系统协同工作而设计的。
项目的代码目录及介绍
项目的代码目录结构如下:
prompt-decorators/:包含项目的核心代码文件,例如装饰器的实现。images/:可能包含项目相关的图像文件。LICENSE:项目的 MIT 许可证文件。README.md:项目的说明文件,介绍了项目的基本信息和如何使用。prompt-decorators.txt:定义了每个装饰器的详细行为和合规性要求。
对项目进行扩展或者二次开发的方向
- 增加新的装饰器:根据用户需求,可以设计并实现新的装饰器来扩展 AI 的响应功能。
- 优化现有装饰器:通过对现有装饰器的性能优化和逻辑改进,可以提高其效率和可靠性。
- 跨平台兼容性:可以将 prompt-decorators 的功能扩展到其他编程语言或平台,以支持更广泛的 AI 系统。
- 集成第三方库:可以将 prompt-decorators 与其他自然语言处理(NLP)库或 AI 模型集成,以提供更全面的解决方案。
- 用户界面(UI)开发:可以开发一个图形用户界面(GUI),使得非技术用户也能轻松使用 prompt-decorators。
- 社区支持和文档:建立更完善的文档和社区支持,以帮助用户更好地理解和使用 prompt-decorators。
通过这些扩展和二次开发的方向,prompt-decorators 项目可以进一步满足开源社区的需求,并为 AI 领域的贡献者提供更多的工具和资源。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355