ZASR_tensorflow 开源项目使用教程
1. 项目介绍
ZASR_tensorflow 是一个基于 TensorFlow 的中文语音识别框架。该项目参考了百度 Deepspeech2 的论文,并使用 Aishell 170 小时的数据进行训练。模型结构如下图所示:
目前模型训练存在不收敛情况,正在调参研究中。
2. 项目快速启动
2.1 环境准备
本程序基于 Python 2.7。TensorFlow 版本应大于 1.3,否则 tf.nn.softmax
等函数可能报错。
安装依赖库
在 Ubuntu 环境下,可以通过 apt-get
安装以下依赖库:
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig
2.2 配置模型参数
进入 conf
文件夹,修改 hyparam.py
中的模型参数。
2.3 数据准备
进入 example/aishell
文件夹,修改 run_data.sh
内的相关存储路径后,运行该脚本生成 manifest[train,dev,test]
文件、vocab.txt
以及 mean_std.npz
。
cd example/aishell
./run_data.sh
2.4 模型训练
运行 train.py
训练模型:
python train.py
2.5 模型测试
运行 test.py
进行测试:
python test.py
2.6 启动服务器和客户端
启动服务器
打开 /demo_server.sh
文件配置 IP、端口等信息,然后执行:
./demo_server.sh
启动客户端
打开 /demo_client.sh
文件配置 IP、端口等信息,然后执行:
./demo_client.sh
在客户端内,持续按空格进行录音,松开空格后发送音频到服务器端进行语音识别。
3. 应用案例和最佳实践
3.1 语音识别系统
ZASR_tensorflow 可以用于构建中文语音识别系统。通过训练模型,可以实现对中文语音的准确识别。
3.2 实时语音转文字
结合服务器和客户端,可以实现实时语音转文字的功能。用户可以通过麦克风输入语音,系统实时将语音转换为文字输出。
4. 典型生态项目
4.1 TensorFlow
ZASR_tensorflow 基于 TensorFlow 框架,充分利用了 TensorFlow 的强大功能和灵活性。
4.2 Aishell 数据集
Aishell 数据集是 ZASR_tensorflow 训练所使用的数据集,提供了丰富的中文语音数据。
4.3 KenLM 语言模型
ZASR_tensorflow 使用 KenLM 工具生成并剪枝得到的中文语言模型,用于测试和使用阶段的解码。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









