ZASR_tensorflow 开源项目使用教程
1. 项目介绍
ZASR_tensorflow 是一个基于 TensorFlow 的中文语音识别框架。该项目参考了百度 Deepspeech2 的论文,并使用 Aishell 170 小时的数据进行训练。模型结构如下图所示:
目前模型训练存在不收敛情况,正在调参研究中。
2. 项目快速启动
2.1 环境准备
本程序基于 Python 2.7。TensorFlow 版本应大于 1.3,否则 tf.nn.softmax
等函数可能报错。
安装依赖库
在 Ubuntu 环境下,可以通过 apt-get
安装以下依赖库:
sudo apt-get install -y pkg-config libflac-dev libogg-dev libvorbis-dev libboost-dev swig
2.2 配置模型参数
进入 conf
文件夹,修改 hyparam.py
中的模型参数。
2.3 数据准备
进入 example/aishell
文件夹,修改 run_data.sh
内的相关存储路径后,运行该脚本生成 manifest[train,dev,test]
文件、vocab.txt
以及 mean_std.npz
。
cd example/aishell
./run_data.sh
2.4 模型训练
运行 train.py
训练模型:
python train.py
2.5 模型测试
运行 test.py
进行测试:
python test.py
2.6 启动服务器和客户端
启动服务器
打开 /demo_server.sh
文件配置 IP、端口等信息,然后执行:
./demo_server.sh
启动客户端
打开 /demo_client.sh
文件配置 IP、端口等信息,然后执行:
./demo_client.sh
在客户端内,持续按空格进行录音,松开空格后发送音频到服务器端进行语音识别。
3. 应用案例和最佳实践
3.1 语音识别系统
ZASR_tensorflow 可以用于构建中文语音识别系统。通过训练模型,可以实现对中文语音的准确识别。
3.2 实时语音转文字
结合服务器和客户端,可以实现实时语音转文字的功能。用户可以通过麦克风输入语音,系统实时将语音转换为文字输出。
4. 典型生态项目
4.1 TensorFlow
ZASR_tensorflow 基于 TensorFlow 框架,充分利用了 TensorFlow 的强大功能和灵活性。
4.2 Aishell 数据集
Aishell 数据集是 ZASR_tensorflow 训练所使用的数据集,提供了丰富的中文语音数据。
4.3 KenLM 语言模型
ZASR_tensorflow 使用 KenLM 工具生成并剪枝得到的中文语言模型,用于测试和使用阶段的解码。
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09