Django LMS 项目教程
1. 项目介绍
Django LMS 是一个基于 Django 框架的学习管理系统(Learning Management System, LMS)。该项目旨在为学校、教育机构或个人提供一个功能丰富的平台,用于管理课程、学生、教师、成绩、在线测验等。Django LMS 提供了课程添加和删除、成绩和评估结果管理、在线测验、报告生成、学生和教师管理、仪表盘等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下软件:
- Python 3.8+
- Redis
2.2 克隆项目
首先,克隆 Django LMS 项目到本地:
git clone https://github.com/adilmohak/django-lms.git
cd django-lms
2.3 创建虚拟环境
创建并激活 Python 虚拟环境:
python3 -m venv venv
source venv/bin/activate
2.4 安装依赖
安装项目所需的依赖包:
pip install -r requirements.txt
2.5 配置环境变量
在项目根目录下创建 .env 文件,并将 .env.example 文件中的内容复制到 .env 文件中,并根据需要自定义变量值。
2.6 数据库迁移
运行数据库迁移命令:
python manage.py migrate
2.7 创建超级用户
创建一个超级用户以便登录管理后台:
python manage.py createsuperuser
2.8 启动服务器
启动 Django 开发服务器:
python manage.py runserver
2.9 启动 Redis 和 Celery
确保 Redis 服务器正在运行:
redis-server
启动 Celery 工作进程:
celery -A config.celery worker -l INFO
2.10 访问项目
打开浏览器,访问 http://127.0.0.1:8000,您将看到 Django LMS 的登录页面。
3. 应用案例和最佳实践
3.1 学校管理系统
Django LMS 可以作为一个完整的学校管理系统,用于管理学生、教师、课程、成绩和在线测验。通过该系统,学校可以轻松地管理学生的学习进度和教师的教学任务。
3.2 在线教育平台
Django LMS 也可以用于构建在线教育平台,提供课程管理、学生注册、在线测验和成绩管理等功能。教师可以通过该平台上传课程资源和布置作业,学生可以在线学习和提交作业。
3.3 企业培训系统
企业可以使用 Django LMS 来管理内部培训课程,跟踪员工的培训进度和成绩。系统提供了丰富的功能,如课程管理、在线测验、成绩报告生成等,帮助企业高效地进行员工培训。
4. 典型生态项目
4.1 Django 框架
Django 是一个高级 Python Web 框架,鼓励快速开发和简洁、实用的设计。Django LMS 正是基于 Django 框架构建的,充分利用了 Django 的强大功能和灵活性。
4.2 Redis
Redis 是一个开源的内存数据结构存储系统,常用作数据库、缓存和消息代理。在 Django LMS 中,Redis 用于支持 Celery 任务队列,确保系统的异步任务能够高效执行。
4.3 Celery
Celery 是一个分布式任务队列,用于处理异步任务和定时任务。在 Django LMS 中,Celery 用于处理后台任务,如发送通知、生成报告等,提升系统的响应速度和性能。
4.4 PostgreSQL
PostgreSQL 是一个功能强大的开源关系型数据库系统,广泛用于各种应用场景。Django LMS 支持 PostgreSQL 作为数据库后端,提供稳定、可靠的数据存储和管理。
通过以上模块的介绍和实践,您可以快速上手并深入了解 Django LMS 项目,构建自己的学习管理系统。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00