DeepHash 开源项目使用教程
2024-09-16 16:49:40作者:晏闻田Solitary
1. 项目目录结构及介绍
DeepHash 项目的目录结构如下:
DeepHash/
├── data/
│   └── cifar10/
│       ├── train.txt
│       ├── test.txt
│       └── database.txt
├── examples/
│   ├── DCH/
│   │   ├── train_val_script.py
│   │   └── ...
│   ├── DTQ/
│   │   ├── train_val_script.py
│   │   └── ...
│   └── ...
├── architecture/
│   ├── __init__.py
│   ├── pretrained_model/
│   └── reference_pretrain.npy
├── __init__.py
├── requirements.txt
├── README.md
└── LICENSE
目录结构介绍
- data/: 存放数据集的目录,包含 CIFAR-10 数据集的训练、测试和数据库文件。
 - examples/: 包含不同模型的训练和验证脚本,如 DCH 和 DTQ 等。
 - architecture/: 存放模型的架构文件,包括预训练模型和参考预训练文件。
 - init.py: 初始化文件。
 - requirements.txt: 项目依赖的 Python 包列表。
 - README.md: 项目的介绍和使用说明。
 - LICENSE: 项目的开源许可证。
 
2. 项目启动文件介绍
项目的启动文件主要位于 examples/ 目录下,每个模型都有一个对应的启动脚本。以 DCH 模型为例,启动文件为 examples/DCH/train_val_script.py。
启动文件示例
# examples/DCH/train_val_script.py
import os
import sys
sys.path.append(os.path.abspath('..'))
from DeepHash.models.DCH import DCHModel
from DeepHash.utils import load_data
def main():
    # 加载数据
    train_data, test_data, database_data = load_data('data/cifar10')
    
    # 初始化模型
    model = DCHModel()
    
    # 训练模型
    model.train(train_data)
    
    # 验证模型
    model.validate(test_data)
if __name__ == "__main__":
    main()
启动步骤
- 进入 
examples/DCH/目录。 - 运行 
python train_val_script.py启动训练和验证过程。 
3. 项目的配置文件介绍
项目的配置文件主要通过命令行参数传递,也可以在 train_val_script.py 中进行硬编码配置。以下是一些常见的配置参数:
配置参数示例
# examples/DCH/train_val_script.py
import argparse
def parse_args():
    parser = argparse.ArgumentParser(description='Deep Cauchy Hashing for Hamming Space Retrieval')
    parser.add_argument('--gpus', type=str, default="0,1", help='GPU IDs to use')
    parser.add_argument('--data-dir', type=str, default='data/cifar10', help='Data directory')
    parser.add_argument('--batch-size', type=int, default=64, help='Batch size for training')
    parser.add_argument('--epochs', type=int, default=100, help='Number of epochs to train')
    return parser.parse_args()
def main():
    args = parse_args()
    # 加载数据
    train_data, test_data, database_data = load_data(args.data_dir)
    
    # 初始化模型
    model = DCHModel(batch_size=args.batch_size, epochs=args.epochs)
    
    # 训练模型
    model.train(train_data)
    
    # 验证模型
    model.validate(test_data)
if __name__ == "__main__":
    main()
配置参数说明
- --gpus: 指定使用的 GPU ID,默认为 "0,1"。
 - --data-dir: 数据集的目录路径,默认为 
data/cifar10。 - --batch-size: 训练时的批量大小,默认为 64。
 - --epochs: 训练的轮数,默认为 100。
 
通过命令行传递配置参数的方式如下:
python train_val_script.py --gpus "0,1" --data-dir "data/cifar10" --batch-size 128 --epochs 200
以上是 DeepHash 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446