DeepHash 开源项目使用教程
2024-09-16 14:11:58作者:晏闻田Solitary
1. 项目目录结构及介绍
DeepHash 项目的目录结构如下:
DeepHash/
├── data/
│ └── cifar10/
│ ├── train.txt
│ ├── test.txt
│ └── database.txt
├── examples/
│ ├── DCH/
│ │ ├── train_val_script.py
│ │ └── ...
│ ├── DTQ/
│ │ ├── train_val_script.py
│ │ └── ...
│ └── ...
├── architecture/
│ ├── __init__.py
│ ├── pretrained_model/
│ └── reference_pretrain.npy
├── __init__.py
├── requirements.txt
├── README.md
└── LICENSE
目录结构介绍
- data/: 存放数据集的目录,包含 CIFAR-10 数据集的训练、测试和数据库文件。
- examples/: 包含不同模型的训练和验证脚本,如 DCH 和 DTQ 等。
- architecture/: 存放模型的架构文件,包括预训练模型和参考预训练文件。
- init.py: 初始化文件。
- requirements.txt: 项目依赖的 Python 包列表。
- README.md: 项目的介绍和使用说明。
- LICENSE: 项目的开源许可证。
2. 项目启动文件介绍
项目的启动文件主要位于 examples/ 目录下,每个模型都有一个对应的启动脚本。以 DCH 模型为例,启动文件为 examples/DCH/train_val_script.py。
启动文件示例
# examples/DCH/train_val_script.py
import os
import sys
sys.path.append(os.path.abspath('..'))
from DeepHash.models.DCH import DCHModel
from DeepHash.utils import load_data
def main():
# 加载数据
train_data, test_data, database_data = load_data('data/cifar10')
# 初始化模型
model = DCHModel()
# 训练模型
model.train(train_data)
# 验证模型
model.validate(test_data)
if __name__ == "__main__":
main()
启动步骤
- 进入
examples/DCH/目录。 - 运行
python train_val_script.py启动训练和验证过程。
3. 项目的配置文件介绍
项目的配置文件主要通过命令行参数传递,也可以在 train_val_script.py 中进行硬编码配置。以下是一些常见的配置参数:
配置参数示例
# examples/DCH/train_val_script.py
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Deep Cauchy Hashing for Hamming Space Retrieval')
parser.add_argument('--gpus', type=str, default="0,1", help='GPU IDs to use')
parser.add_argument('--data-dir', type=str, default='data/cifar10', help='Data directory')
parser.add_argument('--batch-size', type=int, default=64, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs to train')
return parser.parse_args()
def main():
args = parse_args()
# 加载数据
train_data, test_data, database_data = load_data(args.data_dir)
# 初始化模型
model = DCHModel(batch_size=args.batch_size, epochs=args.epochs)
# 训练模型
model.train(train_data)
# 验证模型
model.validate(test_data)
if __name__ == "__main__":
main()
配置参数说明
- --gpus: 指定使用的 GPU ID,默认为 "0,1"。
- --data-dir: 数据集的目录路径,默认为
data/cifar10。 - --batch-size: 训练时的批量大小,默认为 64。
- --epochs: 训练的轮数,默认为 100。
通过命令行传递配置参数的方式如下:
python train_val_script.py --gpus "0,1" --data-dir "data/cifar10" --batch-size 128 --epochs 200
以上是 DeepHash 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355