Mikro-ORM中STI模式下的鉴别器列查询优化
在Mikro-ORM中使用单表继承(STI)模式时,鉴别器列(discriminatorColumn)的处理方式有了重要改进。这个改进解决了在GraphQL等场景下查询嵌套数据时可能出现的问题。
问题背景
单表继承是ORM中常见的一种继承映射策略,它将继承体系中的所有类映射到同一个数据库表中,并通过一个特殊的鉴别器列来区分不同类型的记录。在Mikro-ORM中,开发者可以通过@Entity装饰器的discriminatorColumn选项来指定这个列。
然而,在之前的实现中,如果查询时没有显式请求这个鉴别器列(例如通过GraphQL查询时客户端没有请求该字段),Mikro-ORM会完全从SQL查询中排除这个列。这导致在某些场景下,特别是使用GraphQL联合类型查询嵌套数据时,ORM无法正确识别记录的实际类型。
解决方案
最新版本的Mikro-ORM已经修改了这一行为,现在会始终在SQL查询中包含鉴别器列,即使客户端没有显式请求该字段。这与主键字段的处理方式类似,确保了类型识别的可靠性。
这种改进是自动的,开发者不需要进行任何额外配置。ORM会确保鉴别器列总是被加载,就像它总是加载主键一样。
最佳实践
在使用STI模式时,开发者应该注意以下几点:
- 不需要在子类中重新定义鉴别器列属性,ORM会根据类类型自动处理值
- 鉴别器列应该被声明为抽象基类的属性
- 子类只需要通过
discriminatorValue指定其鉴别值
例如正确的实体定义应该是:
@Entity({
discriminatorColumn: "type",
abstract: true,
})
export abstract class BasePerson {
@PrimaryKey()
id!: number;
@Enum()
type!: "customer" | "employee";
@Property()
name: string;
}
@Entity({ discriminatorValue: "customer" })
export class Customer extends BasePerson {
@Property()
amtMoney: number;
}
技术影响
这一改进特别有利于构建基于Mikro-ORM的GraphQL API。在GraphQL中,客户端可能不会显式请求鉴别器字段,但服务端仍然需要这个信息来正确解析联合类型和接口类型。现在Mikro-ORM确保了鉴别器信息总是可用,使得这类场景能够可靠工作。
总结
Mikro-ORM对STI模式下鉴别器列处理方式的改进,提升了框架在复杂查询场景下的可靠性,特别是在构建灵活API时。开发者现在可以更加自信地使用单表继承模式,而不必担心类型识别问题。这一变化遵循了"约定优于配置"的原则,通过合理的默认行为减少了开发者的认知负担。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00