MeterSphere性能测试中Groovy脚本性能优化实践
问题背景
在使用MeterSphere进行性能测试时,用户发现单台80核物理机的发压能力上限约为1万RPS,无法充分发挥硬件性能。通过分析发现,性能瓶颈主要出现在Groovy脚本处理环节。
问题分析
通过深入排查,我们发现了以下关键问题点:
-
线程阻塞现象:容器内部观察到发压线程频繁被Block,导致并发能力受限。
-
性能消耗定位:火焰图分析显示大量性能消耗在
org/apache/jmeter/modifiers/JSR223PreProcessor.process调用的java/lang/Class.forName方法上。 -
核心问题根源:反编译ms-jmeter-core.jar后发现,每次脚本计算都会执行
Class.forName("io.metersphere.api.jmeter.MsGroovyLoadJarService"...,这种频繁的类加载操作造成了严重的性能损耗。
解决方案探索
针对这个问题,我们尝试了多种解决方案:
-
版本升级:首先尝试升级到v2.10.23-lts版本,但问题依然存在。
-
脚本引擎替换:尝试使用Beanshell替代Groovy,但实测RPS仅能达到200左右,性能反而更差。
-
核心组件替换:最终通过替换ms-jmeter-core.jar文件解决了问题。
实施步骤
具体实施方法如下:
- 创建自定义Dockerfile:
FROM registry.cn-qingdao.aliyuncs.com/metersphere/jmeter-master:5.5-ms12-jdk17
COPY ms-jmeter-core.jar /opt/jmeter/lib
WORKDIR /jmeter-log/
ENTRYPOINT ["/bin/sh","-c","/run-test.sh"]
- 使用更新后的ms-jmeter-core.jar替换原有文件。
技术原理
这个问题的本质在于:
-
类加载开销:频繁的Class.forName调用会导致大量的类加载操作,这在性能测试的高并发场景下会成为严重瓶颈。
-
Groovy引擎特性:Groovy脚本引擎本身具有动态特性,但过度依赖反射和类加载会带来性能损耗。
-
容器化环境限制:在容器化环境中,资源隔离和虚拟化层也会带来额外的性能开销。
最佳实践建议
基于此案例,我们总结出以下性能测试优化建议:
-
脚本预处理:尽可能将脚本逻辑前置处理,减少测试执行时的动态计算。
-
缓存利用:确保开启脚本缓存功能,避免重复编译。
-
组件更新:定期检查核心组件版本,及时更新性能优化后的版本。
-
监控分析:使用火焰图等工具定期分析性能瓶颈,针对性优化。
总结
通过替换优化后的ms-jmeter-core.jar组件,成功解决了MeterSphere性能测试中Groovy脚本导致的性能瓶颈问题。这个案例展示了性能测试工具调优的典型思路:从现象定位到根本原因,再针对性解决。对于企业级性能测试平台,这类底层组件的性能优化往往能带来显著的效率提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00