XTuner项目中全局批大小与序列并行的深度解析
2025-06-13 13:07:54作者:舒璇辛Bertina
全局批大小的计算原理
在XTuner项目中,全局批大小(global_batch_size)的计算是一个关键概念,特别是在大规模模型训练场景下。当配置文件中设置pack_to_max_length = True时,XTuner采用了一种高效的训练策略,其中涉及多个参数的协同作用。
全局批大小的计算需要考虑以下几个核心因素:
- 每设备批大小(batch_size):这是单个GPU处理的样本数量
- GPU数量(n_gpus):参与训练的总GPU数量
- 序列长度(max_length):每条样本的最大长度
- 序列并行度(sp_size):序列并行切分的份数
- 梯度累积步数(accumulative_counts):梯度累积的次数
训练过程中的token消耗计算
XTuner在一次梯度更新中消耗的总token数计算公式为:
batch_size × n_gpus × (max_length / sp_size) × accumulative_counts
这个公式揭示了几个重要设计原则:
-
序列并行的影响:当启用序列并行时,长序列(max_length)会被切分为sp_size个短序列,每个GPU只处理max_length/sp_size长度的序列。这种切分方式显著降低了单卡显存需求。
-
梯度累积的调整:由于序列并行会影响数据并行度(dp_size),为了保持总token数不变,需要将accumulative_counts按比例放大。这就是为什么配置文件中会有
accumulative_counts *= sequence_parallel_size的设置。
性能监控指标
在训练过程中,XTuner通过ThroughputHook监控训练效率。其中tokens_per_sec_per_gpu(TGS)指标反映了单个GPU的处理能力。需要注意的是,这个指标是基于单个迭代(iteration)而非整个优化步(optimizer step)计算的,这样可以更准确地反映GPU的实际处理能力,而不受梯度累积策略的影响。
实际应用建议
- 当调整序列并行度时,必须同步调整accumulative_counts以保持训练稳定性
- 在计算资源有限的情况下,可以通过增加梯度累积步数来模拟更大的批大小
- 监控TGS指标有助于发现训练瓶颈,如IO限制或计算效率问题
理解这些参数间的相互作用,对于高效配置XTuner训练任务至关重要,特别是在处理像Mixtral这样的大规模模型时。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694