XTuner项目中全局批大小与序列并行的深度解析
2025-06-13 07:15:17作者:舒璇辛Bertina
全局批大小的计算原理
在XTuner项目中,全局批大小(global_batch_size)的计算是一个关键概念,特别是在大规模模型训练场景下。当配置文件中设置pack_to_max_length = True时,XTuner采用了一种高效的训练策略,其中涉及多个参数的协同作用。
全局批大小的计算需要考虑以下几个核心因素:
- 每设备批大小(batch_size):这是单个GPU处理的样本数量
 - GPU数量(n_gpus):参与训练的总GPU数量
 - 序列长度(max_length):每条样本的最大长度
 - 序列并行度(sp_size):序列并行切分的份数
 - 梯度累积步数(accumulative_counts):梯度累积的次数
 
训练过程中的token消耗计算
XTuner在一次梯度更新中消耗的总token数计算公式为:
batch_size × n_gpus × (max_length / sp_size) × accumulative_counts
这个公式揭示了几个重要设计原则:
- 
序列并行的影响:当启用序列并行时,长序列(max_length)会被切分为sp_size个短序列,每个GPU只处理max_length/sp_size长度的序列。这种切分方式显著降低了单卡显存需求。
 - 
梯度累积的调整:由于序列并行会影响数据并行度(dp_size),为了保持总token数不变,需要将accumulative_counts按比例放大。这就是为什么配置文件中会有
accumulative_counts *= sequence_parallel_size的设置。 
性能监控指标
在训练过程中,XTuner通过ThroughputHook监控训练效率。其中tokens_per_sec_per_gpu(TGS)指标反映了单个GPU的处理能力。需要注意的是,这个指标是基于单个迭代(iteration)而非整个优化步(optimizer step)计算的,这样可以更准确地反映GPU的实际处理能力,而不受梯度累积策略的影响。
实际应用建议
- 当调整序列并行度时,必须同步调整accumulative_counts以保持训练稳定性
 - 在计算资源有限的情况下,可以通过增加梯度累积步数来模拟更大的批大小
 - 监控TGS指标有助于发现训练瓶颈,如IO限制或计算效率问题
 
理解这些参数间的相互作用,对于高效配置XTuner训练任务至关重要,特别是在处理像Mixtral这样的大规模模型时。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447