提升huggingface_hub大文件下载速度的技术方案
2025-06-30 12:29:32作者:羿妍玫Ivan
在机器学习模型部署和开发过程中,我们经常需要从Hugging Face Hub下载大型模型文件。许多开发者发现,当使用snapshot_download或hf_hub_download方法下载单个大文件时,下载速度往往被限制在40MB/s左右,而实际上服务器可能具备更高的网络带宽能力。
问题分析
经过实际测试发现,当下载包含多个文件的模型仓库时,通过并行下载可以达到300MB/s以上的总下载速度。这表明Hugging Face Hub的API对单个文件下载进行了速度限制,或者Python原生下载客户端没有充分利用多线程和带宽资源。
优化解决方案
1. 正确选择下载方法
对于单个文件下载,推荐使用hf_hub_download而非snapshot_download。前者专为单个文件优化,减少了不必要的仓库扫描逻辑,但保持了相同的下载速度。
2. 多文件并行下载优化
当需要下载整个模型仓库时,snapshot_download提供了max_workers参数,可以增加并行下载的文件数量。每个文件仍然使用单一连接下载,但通过并行处理多个文件可以显著提高总吞吐量。
3. 使用hf_transfer下载工具
为了最大化下载速度,特别是对于大型模型文件,Hugging Face官方提供了hf_transfer工具。这是一个用Rust编写的高性能下载客户端,能够:
- 自动检测并充分利用所有可用带宽
- 高效利用多核CPU资源
- 提供比Python原生客户端更快的下载速度
安装和使用方法:
- 通过pip安装:
pip install hf_transfer - 设置环境变量:
HF_HUB_ENABLE_HF_TRANSFER=1 - 保持原有代码不变,下载速度将自动提升
实际效果
在实际测试中,使用hf_transfer后,单个大文件的下载速度可以从40MB/s提升到接近300MB/s,完全发挥出了服务器的网络带宽潜力。这对于频繁下载大型模型的开发者来说,可以节省大量等待时间。
总结
针对不同场景,Hugging Face Hub提供了灵活的下载优化方案:
- 单个文件优先使用
hf_hub_download - 多文件仓库使用
snapshot_download并调整max_workers - 极致性能需求使用
hf_transfer下载工具
这些方法可以显著提升模型下载效率,特别是在带宽充足的环境下,帮助开发者更高效地完成模型部署和实验工作。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
588
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
474
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454