SHAP项目中的多分类模型摘要图显示问题解析
2025-05-08 08:44:24作者:董灵辛Dennis
问题背景
在使用SHAP库进行多分类模型解释时,用户遇到了一个显示问题。当尝试为三分类问题生成SHAP摘要图时,预期应该显示条形图(bar plot),但实际却生成了交互图(interaction plot)。这个问题出现在最新版本的SHAP库中,而在旧版本(0.44.1)中则表现正常。
问题表现
用户使用以下典型代码生成SHAP摘要图:
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X, plot_type="bar",
class_names=['Cat1', 'Cat2','NC+Cat3'],
class_inds='original')
在旧版本中,这段代码会为每个类别生成一个条形图,显示各特征对该类别预测的重要性。但在新版本中,却意外生成了交互图,这与用户期望的输出不符。
技术分析
SHAP库的summary_plot函数设计用于可视化特征重要性,支持多种绘图类型。对于多分类问题,通常期望看到每个类别的特征重要性分布。条形图特别适合这种场景,因为它可以清晰地比较不同特征对各类别预测的贡献程度。
交互图虽然也提供了有价值的信息,但它主要展示特征间的交互作用,而不是单纯的类别重要性排序。这种意外的行为变化表明新版本中可能存在以下问题之一:
- 参数解析逻辑发生了变化,导致plot_type参数未被正确识别
- 多分类情况下的绘图类型选择逻辑存在缺陷
- 默认绘图类型的选择策略被修改
解决方案
用户发现回退到SHAP 0.44.1版本可以解决这个问题。这确实是一个有效的临时解决方案,但也反映出新版本中可能存在需要修复的回归问题。
对于长期解决方案,建议:
- 检查新版本中summary_plot函数的参数处理逻辑
- 明确多分类情况下plot_type参数的行为规范
- 考虑添加更严格的参数验证,确保用户意图被正确执行
最佳实践建议
在使用SHAP进行多分类模型解释时,建议:
- 明确指定plot_type参数,避免依赖默认行为
- 对于关键项目,固定SHAP版本以确保结果可重现
- 检查绘图输出是否符合预期,必要时进行版本对比
这个问题提醒我们,在机器学习可解释性工具的版本升级过程中,需要特别关注可视化输出的变化,因为这些变化可能影响模型解释的准确性和有效性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322