开源项目启动和配置文档
2025-05-13 07:32:32作者:钟日瑜
1. 项目的目录结构及介绍
本项目fastapi-react-mongodb-docker
的目录结构如下:
fastapi-react-mongodb-docker/
├── backend/ # 后端代码目录
│ ├── app/ # 应用程序目录
│ │ ├── main.py # FastAPI 应用入口文件
│ │ ├── dependencies/ # 依赖模块
│ │ ├── models/ # 数据库模型
│ │ ├── schemas/ # Pydantic 模式定义
│ │ ├── crud/ # CRUD 操作
│ │ └── api/ # API 路由
│ ├── tests/ # 测试模块
│ └── requirements.txt # 项目依赖
├── frontend/ # 前端代码目录
│ ├── package.json # 前端项目配置
│ ├── src/ # 源代码
│ └── ... # 其他前端相关文件
├── docker-compose.yml # Docker Compose 配置文件
├── Dockerfile # Dockerfile 文件
└── README.md # 项目说明文件
backend/
:包含后端代码,使用 FastAPI 框架。frontend/
:包含前端代码,通常使用 React。docker-compose.yml
:定义了容器服务的配置,包括 FastAPI 应用、MongoDB 数据库和前端服务。Dockerfile
:定义了如何构建 FastAPI 应用的 Docker 镜像。README.md
:提供了项目的基本信息和说明。
2. 项目的启动文件介绍
项目的启动文件为 backend/app/main.py
,以下是该文件的简要介绍:
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
这段代码创建了一个 FastAPI 实例,并定义了一个根路由 /
,当访问这个路由时,它会返回一个简单的问候消息。
3. 项目的配置文件介绍
项目的配置主要通过环境变量进行,而不是传统的配置文件。在 backend/
目录下的 main.py
文件中,你可能看到如下配置:
from typing import Any
from pydantic import BaseModel
from fastapi import FastAPI
# 假设有一个配置基类
class Settings(BaseModel):
database_url: str
secret_key: str
# 实例化配置基类,并加载环境变量
settings = Settings(
database_url="mongodb://username:password@localhost:27017/fastapi",
secret_key="your_secret_key"
)
app = FastAPI()
在这个例子中,Settings
类通过 Pydantic 定义了所需的环境变量,如数据库的 URL 和一个密钥。这些变量通常在环境变量中设置,以确保配置的灵活性和安全性。
在实际部署时,你需要在服务器的环境变量中设置这些值,或者使用 .env
文件和 python-dotenv
库来加载它们。
使用 Docker Compose 时,你可以在 docker-compose.yml
文件中指定环境变量,如下所示:
version: '3.8'
services:
backend:
build: ./backend
env_file:
- .env
ports:
- "8000:8000"
volumes:
- .:/app
depends_on:
- mongodb
这里的 env_file
指令用于加载一个包含环境变量的文件,这些变量将覆盖默认的环境变量。
以上就是本项目的基本启动和配置介绍。在实际使用中,可能需要根据具体的需求和环境进行调整和配置。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
530
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401