开源项目启动和配置文档
2025-05-13 20:25:40作者:钟日瑜
1. 项目的目录结构及介绍
本项目fastapi-react-mongodb-docker的目录结构如下:
fastapi-react-mongodb-docker/
├── backend/ # 后端代码目录
│ ├── app/ # 应用程序目录
│ │ ├── main.py # FastAPI 应用入口文件
│ │ ├── dependencies/ # 依赖模块
│ │ ├── models/ # 数据库模型
│ │ ├── schemas/ # Pydantic 模式定义
│ │ ├── crud/ # CRUD 操作
│ │ └── api/ # API 路由
│ ├── tests/ # 测试模块
│ └── requirements.txt # 项目依赖
├── frontend/ # 前端代码目录
│ ├── package.json # 前端项目配置
│ ├── src/ # 源代码
│ └── ... # 其他前端相关文件
├── docker-compose.yml # Docker Compose 配置文件
├── Dockerfile # Dockerfile 文件
└── README.md # 项目说明文件
backend/:包含后端代码,使用 FastAPI 框架。frontend/:包含前端代码,通常使用 React。docker-compose.yml:定义了容器服务的配置,包括 FastAPI 应用、MongoDB 数据库和前端服务。Dockerfile:定义了如何构建 FastAPI 应用的 Docker 镜像。README.md:提供了项目的基本信息和说明。
2. 项目的启动文件介绍
项目的启动文件为 backend/app/main.py,以下是该文件的简要介绍:
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
这段代码创建了一个 FastAPI 实例,并定义了一个根路由 /,当访问这个路由时,它会返回一个简单的问候消息。
3. 项目的配置文件介绍
项目的配置主要通过环境变量进行,而不是传统的配置文件。在 backend/ 目录下的 main.py 文件中,你可能看到如下配置:
from typing import Any
from pydantic import BaseModel
from fastapi import FastAPI
# 假设有一个配置基类
class Settings(BaseModel):
database_url: str
secret_key: str
# 实例化配置基类,并加载环境变量
settings = Settings(
database_url="mongodb://username:password@localhost:27017/fastapi",
secret_key="your_secret_key"
)
app = FastAPI()
在这个例子中,Settings 类通过 Pydantic 定义了所需的环境变量,如数据库的 URL 和一个密钥。这些变量通常在环境变量中设置,以确保配置的灵活性和安全性。
在实际部署时,你需要在服务器的环境变量中设置这些值,或者使用 .env 文件和 python-dotenv 库来加载它们。
使用 Docker Compose 时,你可以在 docker-compose.yml 文件中指定环境变量,如下所示:
version: '3.8'
services:
backend:
build: ./backend
env_file:
- .env
ports:
- "8000:8000"
volumes:
- .:/app
depends_on:
- mongodb
这里的 env_file 指令用于加载一个包含环境变量的文件,这些变量将覆盖默认的环境变量。
以上就是本项目的基本启动和配置介绍。在实际使用中,可能需要根据具体的需求和环境进行调整和配置。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 XL6009自动升降压电源原理图:电子工程师的必备利器【亲测免费】 SUSTechPOINTS 技术文档:3D点云标注工具深度指南【免费下载】 网络安全渗透测试报告模板-2023下载 开源精粹:Klipper 3D 打印机固件深度剖析【亲测免费】 ObjectARX 2020 + AutoCAD 2021 .NET 向导资源文件 Prism 项目技术文档【免费下载】 Navicat Premium 连接Oracle 11g 必备oci.dll 文件指南 TypeIt 技术文档【亲测免费】 SecGPT:引领网络安全智能化的新纪元【亲测免费】 Rescuezilla 项目下载及安装教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347