AWS Deep Learning Containers发布PyTorch 2.6.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了主流深度学习框架,如PyTorch、TensorFlow等,并针对AWS基础设施进行了性能优化。
近日,AWS发布了PyTorch 2.6.0版本的推理专用容器镜像,支持Python 3.12环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。对于GPU版本,特别支持了CUDA 12.4计算平台,能够充分发挥NVIDIA GPU的加速能力。
镜像版本特性
本次发布的PyTorch推理镜像包含以下两个主要版本:
-
CPU优化版本:适用于无GPU加速的计算场景,包含了PyTorch 2.6.0及其相关生态工具,如TorchServe模型服务框架和TorchModelArchiver模型打包工具。
-
GPU加速版本:针对NVIDIA GPU进行了深度优化,不仅包含PyTorch 2.6.0的CUDA 12.4版本,还预装了CUDA命令行工具、cuDNN等必要的GPU加速库。
关键技术组件
两个版本都预装了丰富的Python包和系统依赖:
- 核心框架:PyTorch 2.6.0、TorchVision 0.21.0、TorchAudio 2.6.0
- 科学计算:NumPy 2.2.3、SciPy 1.15.2
- 图像处理:OpenCV 4.11.0、Pillow 11.1.0
- 模型服务:TorchServe 0.12.0、TorchModelArchiver 0.12.0
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS工具链:Boto3 1.36.25、AWS CLI 1.37.25
GPU版本额外包含了MPI4Py 4.0.3等并行计算工具,以及完整的CUDA 12.4工具链和cuDNN加速库。
系统优化与兼容性
这些镜像基于Ubuntu 22.04 LTS构建,确保了系统的长期稳定支持。镜像中包含了GCC 11工具链和相应的标准库,为PyTorch扩展开发提供了良好的编译环境。
值得注意的是,这些镜像已经过AWS EC2环境的全面测试和优化,能够充分发挥AWS云计算的性能优势。用户可以直接在EC2实例上部署这些镜像,无需担心环境配置和依赖问题。
应用场景
AWS Deep Learning Containers的PyTorch推理镜像特别适合以下场景:
-
模型服务化部署:利用预装的TorchServe框架,可以快速将训练好的PyTorch模型部署为可扩展的Web服务。
-
批量推理任务:对于需要处理大量数据的推理任务,这些优化过的镜像能够提供稳定的性能表现。
-
开发测试环境:开发者可以直接使用这些镜像作为基础环境,避免繁琐的环境配置工作。
-
CI/CD流水线:在持续集成和持续部署流程中,使用标准化的容器镜像可以确保环境一致性。
总结
AWS此次发布的PyTorch 2.6.0推理镜像,为深度学习应用提供了开箱即用的解决方案。特别是对Python 3.12和CUDA 12.4的全面支持,使得开发者能够利用最新的技术栈构建高性能的AI应用。这些经过优化和测试的容器镜像,将显著降低企业部署AI模型的复杂度和成本。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00