AWS Deep Learning Containers发布PyTorch 2.6.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了主流深度学习框架,如PyTorch、TensorFlow等,并针对AWS基础设施进行了性能优化。
近日,AWS发布了PyTorch 2.6.0版本的推理专用容器镜像,支持Python 3.12环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 22.04操作系统构建。对于GPU版本,特别支持了CUDA 12.4计算平台,能够充分发挥NVIDIA GPU的加速能力。
镜像版本特性
本次发布的PyTorch推理镜像包含以下两个主要版本:
-
CPU优化版本:适用于无GPU加速的计算场景,包含了PyTorch 2.6.0及其相关生态工具,如TorchServe模型服务框架和TorchModelArchiver模型打包工具。
-
GPU加速版本:针对NVIDIA GPU进行了深度优化,不仅包含PyTorch 2.6.0的CUDA 12.4版本,还预装了CUDA命令行工具、cuDNN等必要的GPU加速库。
关键技术组件
两个版本都预装了丰富的Python包和系统依赖:
- 核心框架:PyTorch 2.6.0、TorchVision 0.21.0、TorchAudio 2.6.0
- 科学计算:NumPy 2.2.3、SciPy 1.15.2
- 图像处理:OpenCV 4.11.0、Pillow 11.1.0
- 模型服务:TorchServe 0.12.0、TorchModelArchiver 0.12.0
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS工具链:Boto3 1.36.25、AWS CLI 1.37.25
GPU版本额外包含了MPI4Py 4.0.3等并行计算工具,以及完整的CUDA 12.4工具链和cuDNN加速库。
系统优化与兼容性
这些镜像基于Ubuntu 22.04 LTS构建,确保了系统的长期稳定支持。镜像中包含了GCC 11工具链和相应的标准库,为PyTorch扩展开发提供了良好的编译环境。
值得注意的是,这些镜像已经过AWS EC2环境的全面测试和优化,能够充分发挥AWS云计算的性能优势。用户可以直接在EC2实例上部署这些镜像,无需担心环境配置和依赖问题。
应用场景
AWS Deep Learning Containers的PyTorch推理镜像特别适合以下场景:
-
模型服务化部署:利用预装的TorchServe框架,可以快速将训练好的PyTorch模型部署为可扩展的Web服务。
-
批量推理任务:对于需要处理大量数据的推理任务,这些优化过的镜像能够提供稳定的性能表现。
-
开发测试环境:开发者可以直接使用这些镜像作为基础环境,避免繁琐的环境配置工作。
-
CI/CD流水线:在持续集成和持续部署流程中,使用标准化的容器镜像可以确保环境一致性。
总结
AWS此次发布的PyTorch 2.6.0推理镜像,为深度学习应用提供了开箱即用的解决方案。特别是对Python 3.12和CUDA 12.4的全面支持,使得开发者能够利用最新的技术栈构建高性能的AI应用。这些经过优化和测试的容器镜像,将显著降低企业部署AI模型的复杂度和成本。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00