Rust-Random项目在no_std环境下的安全随机数生成方案
2025-07-07 09:11:29作者:卓炯娓
在嵌入式系统开发中,使用Rust的no_std环境时,生成安全随机数是一个常见需求。本文将以rust-random/rand项目为例,深入探讨在thumbv7em-none-eabi等no_std目标平台上实现安全随机数生成的技术方案。
问题背景
当开发者尝试在thumbv7em-none-eabi这样的no_std目标平台上使用rand库生成随机数时,会遇到编译错误。这是因为rand库默认依赖getrandom作为底层随机源,而getrandom需要标准库支持或自定义后端实现。
核心问题分析
在no_std环境下,系统通常不提供标准库中的随机源接口。getrandom库默认会尝试使用操作系统提供的随机源,这在嵌入式环境中往往不可用。错误信息明确指出需要定义自定义后端来实现随机数生成功能。
解决方案
方案一:使用预置种子初始化PRNG
对于不需要持续高质量随机数的场景,可以使用已知的安全种子初始化伪随机数生成器(PRNG):
use rand::rngs::StdRng;
use rand::SeedableRng;
// 使用安全来源的种子
const SEED: [u8; 32] = [...];
let mut rng = StdRng::from_seed(SEED);
let random_number = rng.gen_range(1..101);
这种方法的关键在于种子的安全性。种子应该来自可靠的随机源,如硬件随机数生成器或安全启动过程中的熵源。
方案二:实现自定义getrandom后端
对于需要持续高质量随机数的场景,可以实现getrandom的自定义后端:
- 首先在Cargo.toml中配置getrandom:
[dependencies]
getrandom = { version = "0.3", features = ["custom"] }
- 然后实现自定义后端:
use getrandom::register_custom_getrandom;
fn my_getrandom(dest: &mut [u8]) -> Result<(), getrandom::Error> {
// 实现硬件特定的随机数生成逻辑
// 例如使用MCU的硬件随机数生成器
Ok(())
}
register_custom_getrandom!(my_getrandom);
技术考量
-
安全性:嵌入式系统中的随机源质量参差不齐,需要评估硬件随机数生成器的质量。
-
性能:硬件随机数生成通常较慢,可以考虑使用它来定期重种子PRNG。
-
资源消耗:某些加密强度的PRNG可能占用较多内存,需要根据资源限制选择合适的算法。
最佳实践建议
-
对于资源受限的嵌入式系统,推荐使用ChaCha算法,它在安全性和性能之间有良好平衡。
-
在系统启动时,尽可能收集多种熵源来初始化PRNG。
-
定期重种子PRNG可以提高安全性,特别是在长时间运行的应用中。
-
如果硬件提供随机数生成功能,优先使用硬件实现。
通过以上方案,开发者可以在no_std环境下实现安全可靠的随机数生成,满足嵌入式系统开发的需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K