LMDeploy项目中权重加载的permute_v2函数解析
2025-06-04 20:25:30作者:龚格成
背景介绍
在LMDeploy项目的Turbomind模块中,权重加载过程涉及到一个关键的permute_v2函数操作。这个操作主要出现在export_attn函数中,用于处理Transformer模型中的注意力机制权重矩阵。理解这个操作对于深入掌握LMDeploy项目的工作机制至关重要。
permute_v2函数的作用
permute_v2函数的核心操作是一个复杂的张量变换:
x.view(-1, head_num, 2, size_per_head // 2).transpose(2, 3).reshape(x.shape)
这个操作实际上是在调整注意力头中特征维度的排列顺序。具体来说,它实现了从HuggingFace格式到Meta原始Llama权重的转换。
为什么需要permute操作
在Transformer模型中,旋转位置编码(RoPE)的实现方式有两种主流方案:
-
Meta原始Llama实现方式:
- 特征维度排列为:x₀, y₀, x₁, y₁, x₂, y₂, ..., x_{d/2-1}, y_{d/2-1}
- 这种排列方式便于实现相邻维度的旋转操作
-
HuggingFace转换后的实现方式:
- 特征维度排列为:x₀, x₁, x₂, ..., x_{d/2-1}, y₀, y₁, y₂, ..., y_{d/2-1}
- 这种排列需要通过
rotate_half函数来实现旋转操作
LMDeploy项目最初是基于Meta原始Llama权重开发的,因此需要将HuggingFace格式的权重转换回原始格式。
仅对Q和K进行permute的原因
在Transformer的注意力机制中,只有查询(Q)和键(K)需要应用旋转位置编码(RoPE),而值(V)不需要。因此:
- Q和K权重需要经过
permute_v2转换,以适配Turbomind的RoPE实现方式 - V权重保持原样,不需要任何permute操作
技术实现细节
permute_v2函数通过以下步骤实现维度重排:
- 首先将输入张量重塑为
[batch, head_num, 2, size_per_head//2]的形状 - 然后交换第2和第3维度
- 最后恢复原始形状
这种操作实际上是将特征维度从连续排列转换为交错排列,从而匹配Meta原始Llama的RoPE实现要求。
历史背景
LMDeploy项目在HuggingFace发布其转换后的Llama模型之前就已经开始开发,因此选择了直接基于Meta原始权重实现。这一设计决策导致了现在需要在权重加载时进行格式转换。
总结
理解permute_v2函数的作用对于深入使用LMDeploy项目至关重要。它不仅关系到模型权重的正确加载,也反映了不同实现方案之间RoPE实现的差异。通过这种转换,LMDeploy能够在保持与原始Llama兼容的同时,支持加载HuggingFace格式的预训练权重。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692