Gaussian Splatting项目中处理不同尺寸输入图像的技术方案
2025-05-13 06:35:32作者:丁柯新Fawn
项目背景
Gaussian Splatting是一个基于3D高斯分布的实时渲染系统,它能够从多视角图像中重建高质量的3D场景。在实际应用中,用户经常会遇到输入图像尺寸不一致的情况,这给3D重建带来了挑战。
问题分析
在标准流程中,Gaussian Splatting通常假设输入图像具有相同的尺寸和相机参数。然而,现实场景中我们可能遇到:
- 使用不同设备拍摄的图像
- 同一设备在不同变焦倍数下拍摄的图像
- 经过裁剪或旋转处理的图像
这些情况会导致图像尺寸不一致,直接使用标准流程会出现兼容性问题。
技术解决方案
方案一:预处理统一尺寸
最直接的方法是预处理阶段将所有图像调整为统一尺寸:
- 确定目标分辨率
- 保持原始图像宽高比进行缩放
- 必要时进行填充(padding)处理
这种方法简单有效,但会丢失原始图像的某些信息,特别是当不同图像间焦距差异较大时。
方案二:多相机模型支持
更专业的解决方案是利用COLMAP的多相机模型功能:
-
图像组织:按相机模型创建子文件夹
- 例如:
images/camera_model_1/、images/camera_model_2/等
- 例如:
-
特征提取:使用特殊参数运行COLMAP
colmap feature_extractor --ImageReader.single_camera_per_folder 1 -
稀疏重建:COLMAP会自动为每个子文件夹估计独立的相机参数
-
代码适配:修改Gaussian Splatting的
dataset_readers.py- 处理子文件夹路径问题
- 确保能正确加载不同相机模型对应的图像
实现细节
对于方案二,关键修改点在于readColmapCameras函数的适配:
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
try:
image = Image.open(image_path)
except FileNotFoundError:
# 处理多相机模型情况
image_path = os.path.join(images_folder, extr.name)
image_name = extr.name.split(".")[0]
image = Image.open(image_path)
这段代码首先尝试标准路径,如果失败则尝试从子文件夹加载图像,从而兼容多相机模型配置。
注意事项
- 焦距一致性:虽然支持不同尺寸,但建议保持相似的视场角(FOV)
- 图像质量:避免过度缩放导致信息丢失
- 相机参数:确保COLMAP能正确估计各相机模型的内参
- 数据组织:清晰的文件夹结构有助于问题排查
结论
Gaussian Splatting项目通过适当的配置和代码修改,能够有效处理不同尺寸的输入图像。对于专业用户,推荐使用多相机模型方案,它能更好地保留原始图像信息,获得更准确的3D重建结果。对于简单场景,统一尺寸的预处理方法也不失为一种快速解决方案。
实际应用中,用户应根据具体场景需求和数据特点选择合适的方法,平衡重建质量与实现复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26