Gaussian Splatting项目中处理不同尺寸输入图像的技术方案
2025-05-13 02:21:57作者:丁柯新Fawn
项目背景
Gaussian Splatting是一个基于3D高斯分布的实时渲染系统,它能够从多视角图像中重建高质量的3D场景。在实际应用中,用户经常会遇到输入图像尺寸不一致的情况,这给3D重建带来了挑战。
问题分析
在标准流程中,Gaussian Splatting通常假设输入图像具有相同的尺寸和相机参数。然而,现实场景中我们可能遇到:
- 使用不同设备拍摄的图像
- 同一设备在不同变焦倍数下拍摄的图像
- 经过裁剪或旋转处理的图像
这些情况会导致图像尺寸不一致,直接使用标准流程会出现兼容性问题。
技术解决方案
方案一:预处理统一尺寸
最直接的方法是预处理阶段将所有图像调整为统一尺寸:
- 确定目标分辨率
- 保持原始图像宽高比进行缩放
- 必要时进行填充(padding)处理
这种方法简单有效,但会丢失原始图像的某些信息,特别是当不同图像间焦距差异较大时。
方案二:多相机模型支持
更专业的解决方案是利用COLMAP的多相机模型功能:
-
图像组织:按相机模型创建子文件夹
- 例如:
images/camera_model_1/、images/camera_model_2/等
- 例如:
-
特征提取:使用特殊参数运行COLMAP
colmap feature_extractor --ImageReader.single_camera_per_folder 1 -
稀疏重建:COLMAP会自动为每个子文件夹估计独立的相机参数
-
代码适配:修改Gaussian Splatting的
dataset_readers.py- 处理子文件夹路径问题
- 确保能正确加载不同相机模型对应的图像
实现细节
对于方案二,关键修改点在于readColmapCameras函数的适配:
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
try:
image = Image.open(image_path)
except FileNotFoundError:
# 处理多相机模型情况
image_path = os.path.join(images_folder, extr.name)
image_name = extr.name.split(".")[0]
image = Image.open(image_path)
这段代码首先尝试标准路径,如果失败则尝试从子文件夹加载图像,从而兼容多相机模型配置。
注意事项
- 焦距一致性:虽然支持不同尺寸,但建议保持相似的视场角(FOV)
- 图像质量:避免过度缩放导致信息丢失
- 相机参数:确保COLMAP能正确估计各相机模型的内参
- 数据组织:清晰的文件夹结构有助于问题排查
结论
Gaussian Splatting项目通过适当的配置和代码修改,能够有效处理不同尺寸的输入图像。对于专业用户,推荐使用多相机模型方案,它能更好地保留原始图像信息,获得更准确的3D重建结果。对于简单场景,统一尺寸的预处理方法也不失为一种快速解决方案。
实际应用中,用户应根据具体场景需求和数据特点选择合适的方法,平衡重建质量与实现复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705