Gaussian Splatting项目中处理不同尺寸输入图像的技术方案
2025-05-13 21:29:46作者:丁柯新Fawn
项目背景
Gaussian Splatting是一个基于3D高斯分布的实时渲染系统,它能够从多视角图像中重建高质量的3D场景。在实际应用中,用户经常会遇到输入图像尺寸不一致的情况,这给3D重建带来了挑战。
问题分析
在标准流程中,Gaussian Splatting通常假设输入图像具有相同的尺寸和相机参数。然而,现实场景中我们可能遇到:
- 使用不同设备拍摄的图像
- 同一设备在不同变焦倍数下拍摄的图像
- 经过裁剪或旋转处理的图像
这些情况会导致图像尺寸不一致,直接使用标准流程会出现兼容性问题。
技术解决方案
方案一:预处理统一尺寸
最直接的方法是预处理阶段将所有图像调整为统一尺寸:
- 确定目标分辨率
- 保持原始图像宽高比进行缩放
- 必要时进行填充(padding)处理
这种方法简单有效,但会丢失原始图像的某些信息,特别是当不同图像间焦距差异较大时。
方案二:多相机模型支持
更专业的解决方案是利用COLMAP的多相机模型功能:
-
图像组织:按相机模型创建子文件夹
- 例如:
images/camera_model_1/、images/camera_model_2/等
- 例如:
-
特征提取:使用特殊参数运行COLMAP
colmap feature_extractor --ImageReader.single_camera_per_folder 1 -
稀疏重建:COLMAP会自动为每个子文件夹估计独立的相机参数
-
代码适配:修改Gaussian Splatting的
dataset_readers.py- 处理子文件夹路径问题
- 确保能正确加载不同相机模型对应的图像
实现细节
对于方案二,关键修改点在于readColmapCameras函数的适配:
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
try:
image = Image.open(image_path)
except FileNotFoundError:
# 处理多相机模型情况
image_path = os.path.join(images_folder, extr.name)
image_name = extr.name.split(".")[0]
image = Image.open(image_path)
这段代码首先尝试标准路径,如果失败则尝试从子文件夹加载图像,从而兼容多相机模型配置。
注意事项
- 焦距一致性:虽然支持不同尺寸,但建议保持相似的视场角(FOV)
- 图像质量:避免过度缩放导致信息丢失
- 相机参数:确保COLMAP能正确估计各相机模型的内参
- 数据组织:清晰的文件夹结构有助于问题排查
结论
Gaussian Splatting项目通过适当的配置和代码修改,能够有效处理不同尺寸的输入图像。对于专业用户,推荐使用多相机模型方案,它能更好地保留原始图像信息,获得更准确的3D重建结果。对于简单场景,统一尺寸的预处理方法也不失为一种快速解决方案。
实际应用中,用户应根据具体场景需求和数据特点选择合适的方法,平衡重建质量与实现复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137