基于KAN模型的特征重要性分析方法
2025-05-14 17:33:40作者:裴麒琰
KAN(Kolmogorov-Arnold Network)作为一种新型的神经网络架构,其独特的结构为特征重要性分析提供了新的视角。本文将深入探讨在KAN模型中如何有效地计算和解释输入特征的重要性。
KAN模型中的特征重要性基础
在KAN架构中,acts_scale
和acts_scale_std
是两个关键参数,它们记录了网络各层激活函数的尺度信息。acts_scale
表示每个激活函数的L1范数,而acts_scale_std
则是去除了偏置项后的纯变化部分。
对于简单的单隐藏层KAN(如[x,1,1]结构),可以直接使用第一层的acts_scale
作为特征重要性指标。然而,对于更深的网络结构,这种方法会忽略特征通过后续层传播的影响。
多层网络的特征重要性计算
对于多层KAN架构,更准确的方法是计算各层acts_scale
矩阵的连乘积。具体实现如下:
# 对于[input_dim, hidden_dim, output_dim]结构
importances = torch.matmul(model.acts_scale[0].T, model.acts_scale[1].T)
这种方法考虑了特征通过整个网络传播的累积效应。对于更深的网络(如[1393,30,5,1]),则需要连续进行矩阵乘法:
importances = torch.matmul(torch.matmul(model.acts_scale[0].T, model.acts_scale[1].T), model.acts_scale[2].T)
批量数据处理与稳定性分析
值得注意的是,KAN模型对输入数据的处理方式会影响重要性计算结果:
- 单样本输入(case A)会导致
acts_scale_std
为NaN值 - 批量输入(case B)能获得更稳定的重要性估计
建议采用小批量数据(如每次2个样本)进行多次计算,然后取平均和标准差:
sample_importances = []
for i in range(0, len(dataset), 2):
x_input = dataset[i:i+2].reshape(2, input_dim)
model(x_input)
imp = torch.matmul(model.acts_scale_std[0].T, model.acts_scale_std[1].T)
sample_importances.append(imp.sum(dim=1).cpu().numpy())
结果可视化与解释
计算得到的重要性值可以进行归一化和可视化:
# 归一化到0-1范围
normalized_imp = (sample_importances - np.min(sample_importances, axis=0)) / \
(np.max(sample_importances, axis=0) - np.min(sample_importances, axis=0))
# 计算均值和标准差
mean_imp = np.mean(normalized_imp, axis=0)
std_imp = np.std(normalized_imp, axis=0)
# 创建DataFrame并排序
imp_df = pd.DataFrame({
'feature': feature_names,
'importance': mean_imp,
'std': std_imp
}).sort_values('importance', ascending=False)
可视化时可以使用带有误差线的水平条形图,清晰展示各特征的重要性及其波动范围。
方法比较与选择建议
-
acts_scale vs acts_scale_std:前者包含偏置项的影响,后者只反映变化部分。根据实际问题需求选择:
- 如果常数项对预测有实质贡献,使用
acts_scale
- 如果只关心特征的变化影响,使用
acts_scale_std
- 如果常数项对预测有实质贡献,使用
-
KAN重要性 vs 传统方法:与随机森林、SHAP值等方法相比,KAN的重要性分析:
- 更能捕捉非线性关系和特征交互
- 计算效率更高(相比SHAP)
- 结果解释需要考虑网络结构的影响
-
输入处理建议:
- 使用小批量数据而非单样本
- 多次计算取平均以提高稳定性
- 结合其他解释性方法交叉验证
实际应用中的注意事项
- 网络宽度和深度会影响重要性分布,较宽或较深的网络可能需要更复杂的聚合方法
- 对于多输出任务,可以分别计算各输出的重要性,或对所有输出求和得到综合重要性
- 重要性值的绝对值意义不大,应关注相对排序和差异
- 与领域知识结合解释结果,避免纯数据驱动的误判
KAN模型的特征重要性分析为理解复杂数据关系提供了新工具,但需要根据具体问题和模型结构选择适当的方法,并结合其他技术进行验证,才能获得可靠且有意义的结论。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5