基于KAN模型的特征重要性分析方法
2025-05-14 00:07:30作者:裴麒琰
KAN(Kolmogorov-Arnold Network)作为一种新型的神经网络架构,其独特的结构为特征重要性分析提供了新的视角。本文将深入探讨在KAN模型中如何有效地计算和解释输入特征的重要性。
KAN模型中的特征重要性基础
在KAN架构中,acts_scale和acts_scale_std是两个关键参数,它们记录了网络各层激活函数的尺度信息。acts_scale表示每个激活函数的L1范数,而acts_scale_std则是去除了偏置项后的纯变化部分。
对于简单的单隐藏层KAN(如[x,1,1]结构),可以直接使用第一层的acts_scale作为特征重要性指标。然而,对于更深的网络结构,这种方法会忽略特征通过后续层传播的影响。
多层网络的特征重要性计算
对于多层KAN架构,更准确的方法是计算各层acts_scale矩阵的连乘积。具体实现如下:
# 对于[input_dim, hidden_dim, output_dim]结构
importances = torch.matmul(model.acts_scale[0].T, model.acts_scale[1].T)
这种方法考虑了特征通过整个网络传播的累积效应。对于更深的网络(如[1393,30,5,1]),则需要连续进行矩阵乘法:
importances = torch.matmul(torch.matmul(model.acts_scale[0].T, model.acts_scale[1].T), model.acts_scale[2].T)
批量数据处理与稳定性分析
值得注意的是,KAN模型对输入数据的处理方式会影响重要性计算结果:
- 单样本输入(case A)会导致
acts_scale_std为NaN值 - 批量输入(case B)能获得更稳定的重要性估计
建议采用小批量数据(如每次2个样本)进行多次计算,然后取平均和标准差:
sample_importances = []
for i in range(0, len(dataset), 2):
x_input = dataset[i:i+2].reshape(2, input_dim)
model(x_input)
imp = torch.matmul(model.acts_scale_std[0].T, model.acts_scale_std[1].T)
sample_importances.append(imp.sum(dim=1).cpu().numpy())
结果可视化与解释
计算得到的重要性值可以进行归一化和可视化:
# 归一化到0-1范围
normalized_imp = (sample_importances - np.min(sample_importances, axis=0)) / \
(np.max(sample_importances, axis=0) - np.min(sample_importances, axis=0))
# 计算均值和标准差
mean_imp = np.mean(normalized_imp, axis=0)
std_imp = np.std(normalized_imp, axis=0)
# 创建DataFrame并排序
imp_df = pd.DataFrame({
'feature': feature_names,
'importance': mean_imp,
'std': std_imp
}).sort_values('importance', ascending=False)
可视化时可以使用带有误差线的水平条形图,清晰展示各特征的重要性及其波动范围。
方法比较与选择建议
-
acts_scale vs acts_scale_std:前者包含偏置项的影响,后者只反映变化部分。根据实际问题需求选择:
- 如果常数项对预测有实质贡献,使用
acts_scale - 如果只关心特征的变化影响,使用
acts_scale_std
- 如果常数项对预测有实质贡献,使用
-
KAN重要性 vs 传统方法:与随机森林、SHAP值等方法相比,KAN的重要性分析:
- 更能捕捉非线性关系和特征交互
- 计算效率更高(相比SHAP)
- 结果解释需要考虑网络结构的影响
-
输入处理建议:
- 使用小批量数据而非单样本
- 多次计算取平均以提高稳定性
- 结合其他解释性方法交叉验证
实际应用中的注意事项
- 网络宽度和深度会影响重要性分布,较宽或较深的网络可能需要更复杂的聚合方法
- 对于多输出任务,可以分别计算各输出的重要性,或对所有输出求和得到综合重要性
- 重要性值的绝对值意义不大,应关注相对排序和差异
- 与领域知识结合解释结果,避免纯数据驱动的误判
KAN模型的特征重要性分析为理解复杂数据关系提供了新工具,但需要根据具体问题和模型结构选择适当的方法,并结合其他技术进行验证,才能获得可靠且有意义的结论。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868