Sanity.io 工具包用于Next.js的安装与使用指南
2024-09-24 08:25:23作者:冯梦姬Eddie
本指南将带你深入了解如何搭建并使用sanity-io/next-sanity这个开源项目,它是一套专为构建生产级、可编辑内容的Next.js应用程序而设计的工具箱。我们将分步解释其核心组件、目录结构、启动与配置流程。
1. 项目目录结构及介绍
sanity-io/next-sanity不是一个独立的应用程序,而是一个工具集,因此其GitHub仓库主要包含的是库代码而非完整的应用示例。然而,我们可以推断出使用此工具包创建的项目可能包含以下典型结构:
-
src/
- 这个目录通常存放你的Next.js应用的主要源代码。
- sanity/
- 包含与Sanity CMS相关的配置和查询文件。
- env.ts: 环境变量设置,如Sanity项目ID和数据集名称。
- lib/: 存放自定义的Sanity查询(如queries.ts)和客户端配置。
- queries.ts: 定义GROQ查询的文件。
- types: 由Sanity TypeGen生成的TypeScript类型文件。
- 包含与Sanity CMS相关的配置和查询文件。
- 其他Next.js标准目录结构,例如
pages/,components/等。
- sanity/
- 这个目录通常存放你的Next.js应用的主要源代码。
-
public/
- 静态资源存放目录。
-
package.json
- 包含项目依赖、脚本命令等信息。
-
.gitignore, pnpm-lock.yaml, package-lock.json, 或 yarn.lock
- 版本控制忽略文件和锁文件。
-
README.md
- 项目说明文档,包括快速入门步骤和其他重要说明。
-
sanity.config.ts
- 如果包含嵌入式Sanity Studio,该文件可能位于根目录,用于配置Sanity Studio的路径、项目ID等。
2. 项目的启动文件介绍
在使用sanity-io/next-sanity构建的项目中,并没有一个单独称为“启动文件”的概念,而是遵循Next.js的常规启动模式。启动过程通常通过以下命令完成:
# 开发环境启动
npm run dev
# 生产环境构建
npm run build
- 开发模式 (
npm run dev): 启动Next.js的热重载开发服务器。 - 构建模式 (
npm run build): 根据源码生成生产环境优化后的静态页面和服务器代码。
3. 项目的配置文件介绍
环境配置文件 (.env.local)
通常需要在项目根目录下创建或修改.env.local来包含Sanity的项目ID和数据集名称:
NEXT_PUBLIC_SANITY_PROJECT_ID=你的项目ID
NEXT_PUBLIC_SANITY_DATASET=你的数据集名称
Sanity配置文件 (sanity.config.ts)
如果你选择嵌入Sanity Studio到应用中,会有一个sanity.config.ts文件来定义Studio的配置,如项目ID、数据集以及任何定制的结构或插件配置。
// sanity.config.ts
import { defineConfig } from 'sanity';
import { structureBuilder } from 'sanity';
const projectId = process.env.NEXT_PUBLIC_SANITY_PROJECT_ID;
const dataset = process.env.NEXT_PUBLIC_SANITY_DATASET;
export default defineConfig({
basePath: '/studio', // 必须匹配你在路由中的Studio位置
projectId,
dataset,
plugins: [
structureBuilder().list('My Custom List').build(),
// ...其他可能的插件
],
});
Type Generation Configuration (sanity-typegen.json)
若使用Sanity TypeGen,会有一个配置文件指导类型生成过程,这有助于自动产生TypeScript类型:
{
"paths": ["src/**/*.ts", "src/**/*.tsx"],
"schema": "src/sanity/extract.json",
"generates": "src/sanity/types.ts"
}
这些配置确保了你的Next.js应用能够与Sanity CMS无缝集成,利用强类型系统提高开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246