Vue Vben Admin 中 VxeGrid 删除数据后刷新列表的解决方案
在使用 Vue Vben Admin 框架开发管理系统时,经常会遇到表格数据操作后需要刷新列表的需求。本文将详细介绍如何在 VxeGrid 表格组件中实现删除数据后自动刷新列表的功能。
问题背景
在 VxeGrid 表格中,我们通常会为每一行数据添加操作按钮,比如删除按钮。当用户点击删除按钮并成功删除数据后,需要立即刷新表格以显示最新的数据状态。然而,在自定义的单元格渲染组件中,我们无法直接访问到表格实例(gridApi),导致无法调用刷新方法。
解决方案
VxeGrid 提供了完整的解决方案,我们可以通过以下两种方式实现删除后的列表刷新:
方法一:通过渲染参数传递表格实例
在自定义单元格渲染组件中,VxeGrid 会向渲染函数传递一个包含表格实例的参数对象。我们可以利用这个特性将表格实例传递给操作按钮组件:
vxeUI.renderer.add('CellUrdButtons', {
renderTableDefault(_renderOpts, params) {
const { row, $grid } = params;
return h(CustomButtonComponent, {
row,
gridInstance: $grid,
// 其他props
});
},
});
然后在自定义按钮组件中,可以通过 props 接收这个表格实例:
const props = defineProps({
gridInstance: Object, // 接收表格实例
// 其他props
});
const deleteRowEvent = async () => {
await props.deleteRequest(row.id);
props.gridInstance.commitProxy('query'); // 调用刷新方法
};
方法二:通过事件触发刷新
另一种更符合 Vue 设计思想的方式是通过事件触发刷新:
vxeUI.renderer.add('CellUrdButtons', {
renderTableDefault(_renderOpts, params) {
const { row, $grid } = params;
const handleDelete = async () => {
await deleteRequest(row.id);
$grid.commitProxy('query');
};
return h(ElButton, {
onClick: handleDelete,
// 其他props
});
},
});
技术要点解析
-
commitProxy 方法:这是 VxeGrid 提供的一个核心方法,用于触发表格的代理请求。'query' 参数表示执行查询操作,会重新调用我们在 gridOptions 中定义的 proxyConfig.ajax.query 方法。
-
自定义渲染器:VxeGrid 允许我们通过 renderer.add 方法注册自定义的单元格渲染器,这为我们提供了极大的灵活性。
-
上下文传递:在渲染函数中,我们可以获取到当前行的数据(row)、列信息(column)和表格实例($grid)等完整上下文。
最佳实践建议
-
错误处理:在实际开发中,应该为删除操作添加错误处理,确保只有在删除成功后才刷新列表。
-
加载状态:可以考虑在刷新时显示加载状态,提升用户体验。
-
组件解耦:如果操作逻辑较复杂,建议将业务逻辑提取到单独的 composable 中,保持组件简洁。
总结
在 Vue Vben Admin 中使用 VxeGrid 组件时,通过合理利用其提供的渲染器和表格实例方法,我们可以轻松实现各种表格操作后的数据刷新需求。本文介绍的两种方法各有优劣,开发者可以根据具体场景选择最适合的实现方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00