MediaPipeUnityPlugin中FaceLandmarkListWithIrisAnnotation的并发修改问题分析
在Unity中使用MediaPipeUnityPlugin进行面部特征点检测时,开发者可能会遇到一个常见的并发修改异常:"Collection was modified; enumeration operation may not execute"。这个问题主要出现在处理面部特征点数据的过程中,特别是在多线程环境下对集合进行遍历和修改时。
问题背景
MediaPipeUnityPlugin是一个Unity插件,用于集成Google的MediaPipe机器学习管道。在面部特征点检测任务中,插件会生成包含大量特征点的数据,这些数据需要在Unity的主线程中进行可视化渲染。当数据从后台线程传递到主线程时,如果处理不当,就可能出现集合被并发修改的问题。
问题根源
问题的核心在于FaceLandmarkListWithIrisAnnotation
类中的PartitionLandmarkList
方法。该方法负责将面部特征点列表分区处理,但在遍历输入集合时没有考虑到集合可能被其他线程修改的情况。具体表现为:
- 当使用
IReadOnlyList<T>
的枚举器进行遍历时 - 同时后台线程可能正在更新这个集合
- 导致枚举过程中集合被修改,抛出异常
解决方案
针对这个问题,开发者可以采取以下几种解决方案:
1. 使用集合副本
最直接的解决方案是在遍历前创建集合的副本:
var enumerator = landmarks.ToList().GetEnumerator();
这样可以确保遍历的是一个固定的快照,不会受到原集合修改的影响。
2. 添加线程同步机制
在FaceLandmarkerResultAnnotationController
中添加适当的锁机制,确保在访问共享资源时的线程安全:
lock (syncObject)
{
// 访问共享资源的代码
}
3. 使用线程安全的数据结构
考虑使用ConcurrentBag
等线程安全的集合类型来存储中间结果。
最佳实践建议
- 明确线程边界:在Unity中,明确区分后台处理线程和主线程的职责范围
- 避免在主线程外修改Unity对象:所有与Unity引擎相关的操作都应放在主线程执行
- 使用适当的同步机制:当必须在多线程间共享数据时,使用锁或其他同步原语
- 考虑使用消息队列:通过队列将数据从后台线程传递到主线程,而不是直接共享引用
总结
在MediaPipeUnityPlugin中处理面部特征点数据时,开发者需要注意线程安全问题。通过创建集合副本、添加适当的同步机制或使用线程安全的数据结构,可以有效避免"Collection was modified"异常的发生。理解Unity的多线程模型和MediaPipe的数据流机制,对于构建稳定高效的计算机视觉应用至关重要。
对于使用UniRx等响应式编程框架的开发者,还需要特别注意ObserveOnMainThread操作符的使用时机,确保数据在正确的线程上被处理和消费。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









