MediaPipeUnityPlugin中FaceLandmarkListWithIrisAnnotation的并发修改问题分析
在Unity中使用MediaPipeUnityPlugin进行面部特征点检测时,开发者可能会遇到一个常见的并发修改异常:"Collection was modified; enumeration operation may not execute"。这个问题主要出现在处理面部特征点数据的过程中,特别是在多线程环境下对集合进行遍历和修改时。
问题背景
MediaPipeUnityPlugin是一个Unity插件,用于集成Google的MediaPipe机器学习管道。在面部特征点检测任务中,插件会生成包含大量特征点的数据,这些数据需要在Unity的主线程中进行可视化渲染。当数据从后台线程传递到主线程时,如果处理不当,就可能出现集合被并发修改的问题。
问题根源
问题的核心在于FaceLandmarkListWithIrisAnnotation类中的PartitionLandmarkList方法。该方法负责将面部特征点列表分区处理,但在遍历输入集合时没有考虑到集合可能被其他线程修改的情况。具体表现为:
- 当使用
IReadOnlyList<T>的枚举器进行遍历时 - 同时后台线程可能正在更新这个集合
- 导致枚举过程中集合被修改,抛出异常
解决方案
针对这个问题,开发者可以采取以下几种解决方案:
1. 使用集合副本
最直接的解决方案是在遍历前创建集合的副本:
var enumerator = landmarks.ToList().GetEnumerator();
这样可以确保遍历的是一个固定的快照,不会受到原集合修改的影响。
2. 添加线程同步机制
在FaceLandmarkerResultAnnotationController中添加适当的锁机制,确保在访问共享资源时的线程安全:
lock (syncObject)
{
// 访问共享资源的代码
}
3. 使用线程安全的数据结构
考虑使用ConcurrentBag等线程安全的集合类型来存储中间结果。
最佳实践建议
- 明确线程边界:在Unity中,明确区分后台处理线程和主线程的职责范围
- 避免在主线程外修改Unity对象:所有与Unity引擎相关的操作都应放在主线程执行
- 使用适当的同步机制:当必须在多线程间共享数据时,使用锁或其他同步原语
- 考虑使用消息队列:通过队列将数据从后台线程传递到主线程,而不是直接共享引用
总结
在MediaPipeUnityPlugin中处理面部特征点数据时,开发者需要注意线程安全问题。通过创建集合副本、添加适当的同步机制或使用线程安全的数据结构,可以有效避免"Collection was modified"异常的发生。理解Unity的多线程模型和MediaPipe的数据流机制,对于构建稳定高效的计算机视觉应用至关重要。
对于使用UniRx等响应式编程框架的开发者,还需要特别注意ObserveOnMainThread操作符的使用时机,确保数据在正确的线程上被处理和消费。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00