NATS服务器在OpenShift路由中的TLS握手问题分析与解决方案
问题背景
在使用NATS服务器(版本2.10.21)构建跨多个OpenShift集群的分布式系统时,开发人员遇到了TLS握手失败的问题。具体场景是在OpenShift环境中尝试通过路由(Route)实现跨集群的NATS服务器连接,但TLS验证无法通过。
问题现象
当配置NATS服务器使用OpenShift路由进行跨集群连接时,系统日志显示TLS握手失败,错误信息表明证书验证无法完成,因为证书不包含IP SANs(Subject Alternative Names)。错误日志显示NATS服务器尝试使用IP地址而非配置的主机名进行TLS验证。
技术分析
根本原因
-
路由发现机制:NATS服务器的集群发现机制在内部处理连接时,会尝试使用IP地址建立连接,而不是保留原始配置中的主机名。
-
TLS验证方式:当使用OpenShift路由(TLS passthrough模式)时,NATS服务器默认使用IP地址进行TLS证书验证,而现代TLS证书通常配置的是域名而非IP地址。
-
集群配置同步:在分布式环境中,各节点的路由配置必须保持完全一致,否则可能导致集群分区问题。
解决方案
配置方案
-
显式路由配置:为每个NATS服务器节点明确配置所有其他节点的路由地址,包括:
- 本地集群内的服务地址(通过headless service)
- 远程集群的路由地址(通过OpenShift Route)
-
证书配置优化:确保证书包含所有可能用于连接的主机名,包括:
- 服务DNS名称(如nats.nats-stretch-1.svc.cluster.local)
- 外部路由域名(如nats-nats-stretch-1.example.com)
-
禁用广告设置:在某些情况下,需要禁用no_advertise配置选项以确保路由信息正确传播。
实施步骤
- 为每个OpenShift集群中的NATS服务器配置相同的路由列表
- 确保所有节点使用兼容的TLS证书
- 在配置更新后,对每个NATS服务器实例执行配置重载
- 监控集群状态,确保所有节点正确连接
实践经验
-
连接稳定性:在跨集群部署中,集群完全建立连接可能需要2-3分钟时间,这属于正常现象。
-
网络插件影响:不同的OpenShift网络插件(如OVN、Calico或Cilium)可能对连接行为有不同影响,需要针对性测试。
-
负载均衡方案:除了OpenShift路由,也可以考虑使用LoadBalancer服务类型,但同样需要注意TLS验证问题。
总结
在OpenShift环境中部署跨集群的NATS服务器时,正确处理TLS验证和路由配置是关键。通过显式配置所有路由地址、优化证书设置以及理解集群发现机制的工作原理,可以构建稳定可靠的分布式NATS集群系统。实施过程中需要注意配置一致性,并对连接建立时间有合理预期。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









