NATS服务器在OpenShift路由中的TLS握手问题分析与解决方案
问题背景
在使用NATS服务器(版本2.10.21)构建跨多个OpenShift集群的分布式系统时,开发人员遇到了TLS握手失败的问题。具体场景是在OpenShift环境中尝试通过路由(Route)实现跨集群的NATS服务器连接,但TLS验证无法通过。
问题现象
当配置NATS服务器使用OpenShift路由进行跨集群连接时,系统日志显示TLS握手失败,错误信息表明证书验证无法完成,因为证书不包含IP SANs(Subject Alternative Names)。错误日志显示NATS服务器尝试使用IP地址而非配置的主机名进行TLS验证。
技术分析
根本原因
-
路由发现机制:NATS服务器的集群发现机制在内部处理连接时,会尝试使用IP地址建立连接,而不是保留原始配置中的主机名。
-
TLS验证方式:当使用OpenShift路由(TLS passthrough模式)时,NATS服务器默认使用IP地址进行TLS证书验证,而现代TLS证书通常配置的是域名而非IP地址。
-
集群配置同步:在分布式环境中,各节点的路由配置必须保持完全一致,否则可能导致集群分区问题。
解决方案
配置方案
-
显式路由配置:为每个NATS服务器节点明确配置所有其他节点的路由地址,包括:
- 本地集群内的服务地址(通过headless service)
- 远程集群的路由地址(通过OpenShift Route)
-
证书配置优化:确保证书包含所有可能用于连接的主机名,包括:
- 服务DNS名称(如nats.nats-stretch-1.svc.cluster.local)
- 外部路由域名(如nats-nats-stretch-1.example.com)
-
禁用广告设置:在某些情况下,需要禁用no_advertise配置选项以确保路由信息正确传播。
实施步骤
- 为每个OpenShift集群中的NATS服务器配置相同的路由列表
- 确保所有节点使用兼容的TLS证书
- 在配置更新后,对每个NATS服务器实例执行配置重载
- 监控集群状态,确保所有节点正确连接
实践经验
-
连接稳定性:在跨集群部署中,集群完全建立连接可能需要2-3分钟时间,这属于正常现象。
-
网络插件影响:不同的OpenShift网络插件(如OVN、Calico或Cilium)可能对连接行为有不同影响,需要针对性测试。
-
负载均衡方案:除了OpenShift路由,也可以考虑使用LoadBalancer服务类型,但同样需要注意TLS验证问题。
总结
在OpenShift环境中部署跨集群的NATS服务器时,正确处理TLS验证和路由配置是关键。通过显式配置所有路由地址、优化证书设置以及理解集群发现机制的工作原理,可以构建稳定可靠的分布式NATS集群系统。实施过程中需要注意配置一致性,并对连接建立时间有合理预期。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C074
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00