NATS服务器在OpenShift路由中的TLS握手问题分析与解决方案
问题背景
在使用NATS服务器(版本2.10.21)构建跨多个OpenShift集群的分布式系统时,开发人员遇到了TLS握手失败的问题。具体场景是在OpenShift环境中尝试通过路由(Route)实现跨集群的NATS服务器连接,但TLS验证无法通过。
问题现象
当配置NATS服务器使用OpenShift路由进行跨集群连接时,系统日志显示TLS握手失败,错误信息表明证书验证无法完成,因为证书不包含IP SANs(Subject Alternative Names)。错误日志显示NATS服务器尝试使用IP地址而非配置的主机名进行TLS验证。
技术分析
根本原因
-
路由发现机制:NATS服务器的集群发现机制在内部处理连接时,会尝试使用IP地址建立连接,而不是保留原始配置中的主机名。
-
TLS验证方式:当使用OpenShift路由(TLS passthrough模式)时,NATS服务器默认使用IP地址进行TLS证书验证,而现代TLS证书通常配置的是域名而非IP地址。
-
集群配置同步:在分布式环境中,各节点的路由配置必须保持完全一致,否则可能导致集群分区问题。
解决方案
配置方案
-
显式路由配置:为每个NATS服务器节点明确配置所有其他节点的路由地址,包括:
- 本地集群内的服务地址(通过headless service)
- 远程集群的路由地址(通过OpenShift Route)
-
证书配置优化:确保证书包含所有可能用于连接的主机名,包括:
- 服务DNS名称(如nats.nats-stretch-1.svc.cluster.local)
- 外部路由域名(如nats-nats-stretch-1.example.com)
-
禁用广告设置:在某些情况下,需要禁用no_advertise配置选项以确保路由信息正确传播。
实施步骤
- 为每个OpenShift集群中的NATS服务器配置相同的路由列表
- 确保所有节点使用兼容的TLS证书
- 在配置更新后,对每个NATS服务器实例执行配置重载
- 监控集群状态,确保所有节点正确连接
实践经验
-
连接稳定性:在跨集群部署中,集群完全建立连接可能需要2-3分钟时间,这属于正常现象。
-
网络插件影响:不同的OpenShift网络插件(如OVN、Calico或Cilium)可能对连接行为有不同影响,需要针对性测试。
-
负载均衡方案:除了OpenShift路由,也可以考虑使用LoadBalancer服务类型,但同样需要注意TLS验证问题。
总结
在OpenShift环境中部署跨集群的NATS服务器时,正确处理TLS验证和路由配置是关键。通过显式配置所有路由地址、优化证书设置以及理解集群发现机制的工作原理,可以构建稳定可靠的分布式NATS集群系统。实施过程中需要注意配置一致性,并对连接建立时间有合理预期。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00