Slate项目slate-react@0.114.0版本发布:渲染优化与自定义能力增强
Slate是一个高度可定制的富文本编辑器框架,它基于React构建,提供了构建现代化编辑器所需的核心功能。作为Slate生态中的重要组成部分,slate-react库负责处理编辑器在React环境中的渲染和交互逻辑。
本次发布的slate-react@0.114.0版本带来了两项重要改进,主要聚焦于渲染性能优化和自定义渲染能力的增强。这些改进使得开发者能够更精细地控制文本节点的渲染行为,同时提升了选择器在渲染过程中的性能表现。
渲染叶子节点的位置信息增强
新版本在RenderLeafProps接口中新增了leafPosition属性,这个属性为开发者提供了关于当前叶子节点在文本中的精确位置信息。具体包含以下四个关键属性:
start:表示当前叶子节点在文本节点中的起始位置end:表示当前叶子节点在文本节点中的结束位置isFirst:标识当前叶子节点是否是文本节点中的第一个片段isLast:标识当前叶子节点是否是文本节点中的最后一个片段
这个改进特别适用于当文本节点被装饰器(decorations)分割成多个片段的情况。在此之前,开发者很难准确知道某个叶子节点片段在整个文本节点中的相对位置,现在通过这些位置信息,开发者可以实现更精确的样式控制或交互逻辑。
例如,现在可以轻松实现只在文本节点的第一个片段添加特殊样式,或者在最后一个片段添加特定交互效果,而不需要复杂的自定义装饰器逻辑。
自定义文本渲染能力
新版本为<Editable />组件新增了一个可选的renderText属性,这个属性允许开发者完全自定义文本节点的渲染方式。在此之前,虽然可以通过renderLeaf和renderElement来自定义叶子和元素的渲染,但对基础文本节点的渲染控制相对有限。
renderText属性的引入为开发者提供了更底层的控制能力,使得可以完全接管文本节点的渲染过程。这在需要实现特殊文本效果或高度定制化的文本显示场景下非常有用。
选择器性能优化
在性能方面,新版本改进了useSlateSelector钩子的实现,现在在渲染过程中也会使用equalityFn进行相等性比较。这个改进意味着:
- 当选择器返回的值与前一次相同时,可以避免不必要的重新渲染
- 开发者可以通过自定义相等性比较函数来进一步优化性能
- 对于复杂的选择器计算,这种优化可以显著减少React组件的重渲染次数
这个改进对于大型文档或复杂编辑器的性能优化尤为重要,特别是在那些依赖多个选择器来派生状态的应用中。
升级建议
对于正在使用Slate的开发团队,建议评估以下升级场景:
- 如果你的编辑器需要基于文本位置实现特殊样式或行为,应该考虑升级以利用新的
leafPosition信息 - 如果需要更灵活的文本渲染控制,可以尝试使用新的
renderText属性 - 对于性能敏感的应用,特别是那些已经使用了
useSlateSelector的场景,升级可以获得自动的性能提升
升级过程相对平滑,因为这些新增功能都是可选的增强,不会破坏现有的API契约。不过,与任何依赖更新一样,建议在测试环境中先行验证,确保没有意外的行为变化。
总的来说,slate-react@0.114.0版本通过提供更精细的渲染控制和性能优化,进一步巩固了Slate作为现代化富文本编辑器框架的地位,为开发者构建复杂、高性能的编辑器体验提供了更多可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00