Spark Operator中Sidecar容器间歇性注入失败问题分析与解决
问题背景
在使用Spark Operator管理SparkApplication资源时,开发人员发现了一个关于sidecar容器注入的间歇性故障现象。具体表现为:在创建Spark应用Pod时,大约60%的情况下sidecar容器能够成功注入,但其余40%的情况下注入会失败,且没有明显的错误日志或事件记录。
问题现象
当问题发生时,Kubernetes API服务器会记录如下错误信息:
Failed calling webhook, failing open webhook.sparkoperator.k8s.io: failed calling webhook "webhook.sparkoperator.k8s.io": failed to call webhook: Post "https://spark-operator-webhook.spark-operator.svc:443/webhook?timeout=30s": tls: failed to verify certificate: x509: certificate is valid for metrics-server.kube-system.svc, not spark-operator-webhook.spark-operator.svc
这个错误表明,当API服务器尝试调用Spark Operator的webhook服务时,遇到了TLS证书验证失败的问题。证书中配置的有效域名是metrics-server.kube-system.svc,而不是预期的spark-operator-webhook.spark-operator.svc。
根本原因分析
-
证书配置问题:最直接的原因是webhook服务使用的TLS证书配置错误。证书的主题备用名称(SAN)中包含了错误的服务域名。
-
间歇性出现的原因:这种间歇性故障可能有以下几种解释:
- 证书轮换过程中出现了配置不一致
- 多个webhook服务可能共享了相同的证书配置
- Kubernetes服务发现机制在某些情况下解析到了错误的端点
-
Mutating Webhook工作机制:Spark Operator使用Kubernetes的Mutating Admission Webhook机制来注入sidecar容器。当webhook调用失败时,Kubernetes会采取"fail open"策略,即允许请求继续但不会执行变更操作,这就解释了为什么sidecar没有被注入但也没有明显的错误。
解决方案
-
检查并重新配置证书:
- 确认Spark Operator部署中webhook服务的证书配置
- 确保证书包含正确的SAN条目,特别是spark-operator-webhook.spark-operator.svc
- 如果使用自签名证书,确保CA证书被正确加载到API服务器的信任链中
-
验证webhook配置:
- 检查MutatingWebhookConfiguration资源,确认webhook客户端配置正确
- 确保webhook服务端点的配置与实际服务部署一致
-
升级Spark Operator:
- 考虑升级到最新版本,因为社区可能已经修复了相关的证书管理问题
-
监控和告警:
- 设置对webhook调用失败的监控
- 对证书过期和配置变更设置告警
最佳实践建议
-
证书管理:
- 使用Kubernetes的Cert-Manager等工具自动化证书管理
- 确保证书包含所有可能的访问域名和IP地址
-
Webhook设计:
- 实现webhook服务的健康检查端点
- 考虑实现webhook服务的优雅终止处理
-
测试验证:
- 在部署前验证webhook服务的证书配置
- 实施端到端测试验证sidecar注入功能
总结
Spark Operator中sidecar注入的间歇性失败问题通常与webhook服务的TLS证书配置有关。通过仔细检查证书配置、验证webhook服务设置,并实施健全的证书管理策略,可以有效地解决这类问题。对于生产环境,建议实施自动化证书管理和监控告警机制,以确保服务的持续可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00