Stable Diffusion WebUI TensorRT 扩展教程
项目介绍
Stable Diffusion WebUI TensorRT 扩展是一个用于提升 Stable Diffusion WebUI 性能的开源项目。该项目通过利用 NVIDIA RTX GPU 中的 Tensor Cores,将 Stable Diffusion 的性能提升一倍。本扩展适用于 Automatic1111 的 Stable Diffusion 分布,这是目前最流行的 Stable Diffusion 版本。
项目快速启动
安装步骤
-
克隆项目仓库:
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-tensorrt.git cd stable-diffusion-webui-tensorrt
-
下载并解压 TensorRT:
- 从 NVIDIA 下载与 Python 的 torch 库版本匹配的 TensorRT zip 文件。
- 例如,对于 torch 2.0.1,下载 CUDA 11.8 版本的 TensorRT。
- 将 zip 文件解压到扩展目录中,确保
TensorRT-8.6.1.6
目录与scripts
目录和trt_path.py
文件在同一位置。
-
重启 WebUI:
# 重启 WebUI 的命令
使用步骤
-
选择模型并生成图片:
- 在 WebUI 中选择要优化的模型,并生成包含所需 LoRAs 和超网络的图片。
-
转换模型:
- 进入
Convert to ONNX
标签页,点击Convert Unet to ONNX
。 - 转换完成后,在
models/Unet-onnx
目录中找到 ONNX 文件。 - 进入
Convert ONNX to TensorRT
标签页,配置必要参数并点击Convert ONNX to TensorRT
。 - 转换完成后,在
models/Unet-trt
目录中找到 TensorRT 文件。
- 进入
-
设置 Stable Diffusion:
- 在 Stable Diffusion 页面中,使用
SD Unet
选项选择新生成的 TensorRT 模型。
- 在 Stable Diffusion 页面中,使用
-
生成图片:
- 使用 Stable Diffusion 2.0 生成图片。
应用案例和最佳实践
案例一:图像生成加速
通过使用 TensorRT 扩展,用户可以在保持图像质量的同时,显著减少图像生成时间。这对于需要大量图像生成的应用场景(如游戏开发、电影制作等)非常有用。
案例二:实时图像处理
在实时图像处理应用中,TensorRT 扩展可以提供更快的响应时间,使得实时图像编辑和渲染成为可能。这对于视频直播、在线教育等领域具有重要意义。
最佳实践
- 保持驱动程序更新:确保 NVIDIA 驱动程序是最新的,以获得系统范围内的性能改进。
- 合理配置参数:在转换模型时,合理配置参数以平衡性能和资源消耗。
- 监控资源使用:在转换过程中,监控 VRAM 使用情况,必要时手动运行转换命令以释放资源。
典型生态项目
Automatic1111 的 Stable Diffusion 分布
Automatic1111 的 Stable Diffusion 分布是目前最流行的 Stable Diffusion 版本,提供了丰富的功能和良好的社区支持。TensorRT 扩展与其紧密集成,为用户提供了高性能的图像生成解决方案。
NVIDIA TensorRT
NVIDIA TensorRT 是一个高性能深度学习推理库,适用于从云端到边缘的各种应用。通过与 Stable Diffusion WebUI 的结合,TensorRT 扩展进一步提升了深度学习模型的推理性能。
ONNX 转换工具
ONNX(Open Neural Network Exchange)是一个开放的深度学习模型交换格式,允许模型在不同的深度学习框架之间进行转换。TensorRT 扩展利用 ONNX 转换工具,简化了模型从 PyTorch 到 TensorRT 的转换过程。
通过以上模块的介绍和实践,用户可以充分利用 Stable Diffusion WebUI TensorRT 扩展,提升图像生成和处理的性能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









