Stable Diffusion WebUI TensorRT 扩展教程
项目介绍
Stable Diffusion WebUI TensorRT 扩展是一个用于提升 Stable Diffusion WebUI 性能的开源项目。该项目通过利用 NVIDIA RTX GPU 中的 Tensor Cores,将 Stable Diffusion 的性能提升一倍。本扩展适用于 Automatic1111 的 Stable Diffusion 分布,这是目前最流行的 Stable Diffusion 版本。
项目快速启动
安装步骤
-
克隆项目仓库:
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-tensorrt.git cd stable-diffusion-webui-tensorrt -
下载并解压 TensorRT:
- 从 NVIDIA 下载与 Python 的 torch 库版本匹配的 TensorRT zip 文件。
- 例如,对于 torch 2.0.1,下载 CUDA 11.8 版本的 TensorRT。
- 将 zip 文件解压到扩展目录中,确保
TensorRT-8.6.1.6目录与scripts目录和trt_path.py文件在同一位置。
-
重启 WebUI:
# 重启 WebUI 的命令
使用步骤
-
选择模型并生成图片:
- 在 WebUI 中选择要优化的模型,并生成包含所需 LoRAs 和超网络的图片。
-
转换模型:
- 进入
Convert to ONNX标签页,点击Convert Unet to ONNX。 - 转换完成后,在
models/Unet-onnx目录中找到 ONNX 文件。 - 进入
Convert ONNX to TensorRT标签页,配置必要参数并点击Convert ONNX to TensorRT。 - 转换完成后,在
models/Unet-trt目录中找到 TensorRT 文件。
- 进入
-
设置 Stable Diffusion:
- 在 Stable Diffusion 页面中,使用
SD Unet选项选择新生成的 TensorRT 模型。
- 在 Stable Diffusion 页面中,使用
-
生成图片:
- 使用 Stable Diffusion 2.0 生成图片。
应用案例和最佳实践
案例一:图像生成加速
通过使用 TensorRT 扩展,用户可以在保持图像质量的同时,显著减少图像生成时间。这对于需要大量图像生成的应用场景(如游戏开发、电影制作等)非常有用。
案例二:实时图像处理
在实时图像处理应用中,TensorRT 扩展可以提供更快的响应时间,使得实时图像编辑和渲染成为可能。这对于视频直播、在线教育等领域具有重要意义。
最佳实践
- 保持驱动程序更新:确保 NVIDIA 驱动程序是最新的,以获得系统范围内的性能改进。
- 合理配置参数:在转换模型时,合理配置参数以平衡性能和资源消耗。
- 监控资源使用:在转换过程中,监控 VRAM 使用情况,必要时手动运行转换命令以释放资源。
典型生态项目
Automatic1111 的 Stable Diffusion 分布
Automatic1111 的 Stable Diffusion 分布是目前最流行的 Stable Diffusion 版本,提供了丰富的功能和良好的社区支持。TensorRT 扩展与其紧密集成,为用户提供了高性能的图像生成解决方案。
NVIDIA TensorRT
NVIDIA TensorRT 是一个高性能深度学习推理库,适用于从云端到边缘的各种应用。通过与 Stable Diffusion WebUI 的结合,TensorRT 扩展进一步提升了深度学习模型的推理性能。
ONNX 转换工具
ONNX(Open Neural Network Exchange)是一个开放的深度学习模型交换格式,允许模型在不同的深度学习框架之间进行转换。TensorRT 扩展利用 ONNX 转换工具,简化了模型从 PyTorch 到 TensorRT 的转换过程。
通过以上模块的介绍和实践,用户可以充分利用 Stable Diffusion WebUI TensorRT 扩展,提升图像生成和处理的性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00