LLamaSharp项目中RAG技术的最佳实践探索
2025-06-26 11:11:30作者:凌朦慧Richard
在LLamaSharp项目中实现检索增强生成(RAG)是一个值得深入探讨的技术话题。本文将从技术实现角度,分享如何在LLamaSharp中构建一个完整的RAG流程。
RAG架构的核心组件
一个完整的RAG系统通常包含三个关键部分:
- 嵌入模型:负责将文本转换为向量表示
- 检索系统:基于向量相似度查找相关文档
- 生成模型:根据检索结果生成最终回答
在LLamaSharp中,我们可以利用其与Semantic Kernel的集成来实现这一流程。
实践方案详解
初始化设置
首先需要加载本地LLM库和嵌入模型。关键步骤包括设置模型参数和初始化嵌入器:
var embeddingParameters = new ModelParams(embeddingModelPath) {
ContextSize = 4096,
GpuLayerCount = 13,
Embeddings = true
};
var embeddingWeights = LLamaWeights.LoadFromFile(embeddingParameters);
var embedder = new LLamaEmbedder(embeddingWeights, embeddingParameters);
构建语义记忆系统
使用SQLite作为向量存储后端,结合LLamaSharp的嵌入能力:
ISemanticTextMemory memory = new MemoryBuilder()
.WithMemoryStore(await SqliteMemoryStore.ConnectAsync("mydata.db"))
.WithTextEmbeddingGeneration(service)
.Build();
文档处理流程
文档处理是RAG的关键环节,需要合理切分文本:
string text = File.ReadAllText(item.path);
var paragraphs = TextChunker.SplitPlainTextParagraphs(
TextChunker.SplitPlainTextLines(text, 128), 512);
检索与生成
检索阶段通过语义相似度查找相关内容:
await foreach (var result in memory.SearchAsync(
collectionName, question, limit: 1, minRelevanceScore: 0))
{
builder.AppendLine(result.Metadata.Text);
sources.Add(result.Metadata.Id);
}
进阶优化方向
- 多源检索与重排序:获取多个相关文档后进行二次排序
- 摘要生成:对检索结果进行摘要提炼
- 上下文增强:将检索结果与原始问题结合生成更优回答
- 批处理优化:支持并行处理提升效率
技术要点总结
- 嵌入模型选择:需要专门训练过的嵌入模型
- 文本分块策略:影响检索质量的关键因素
- 相似度计算:通常使用余弦相似度
- 生成模型整合:需要将检索结果融入生成提示
通过LLamaSharp与相关生态组件的结合,开发者可以构建出高效的RAG应用,为问答系统、知识库等场景提供强大支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1