cloudwatch-logs-subscription-consumer 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
cloudwatch-logs-subscription-consumer 是一个开源项目,它基于 Amazon Kinesis Connector Library 开发,用于将 Amazon CloudWatch Logs 的数据实时传输到其他系统中。该项目提供了一个专门化的 Amazon Kinesis stream reader,可以帮助用户通过 CloudWatch Logs Subscription Filter 实现数据的实时传输。当前版本支持 Elasticsearch 和 Amazon S3 作为内置的连接器,同时也支持通过 Amazon Kinesis Connector Library 框架扩展支持其他目的地。
该项目的主要编程语言是 Java。
2. 项目使用的关键技术和框架
- Amazon Kinesis Connector Library: 用于处理 Amazon Kinesis 数据流的一个开源库。
- Elasticsearch: 一个分布式、RESTful 搜索和分析引擎,适用于处理大量的数据。
- Amazon S3: Amazon 的简单存储服务,用于存储和检索任意数量的数据。
- CloudFormation: Amazon Web Services 提供的一种基础设施即代码服务,可以用来创建和管理 AWS 资源。
- Kibana: 一个开源的数据可视化和分析工具,常与 Elasticsearch 一起使用。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装前,请确保您已经满足以下条件:
- 安装了 Java 开发环境。
- 安装了 Maven,用于构建和管理 Java 项目。
- 具有访问 AWS 服务(如 CloudWatch Logs、Kinesis、EC2、S3 等)的权限。
- 创建了一个 AWS CloudWatch Logs 组,并配置了相关的日志数据。
安装步骤
-
克隆项目仓库
打开终端或命令提示符,执行以下命令以克隆项目仓库:
git clone https://github.com/amazon-archives/cloudwatch-logs-subscription-consumer.git -
构建项目
进入项目目录,使用 Maven 构建项目:
cd cloudwatch-logs-subscription-consumer mvn clean install -
配置 CloudFormation 模板
在项目目录中,有一个 CloudFormation 模板文件
configuration/cloudformation/cwl-elasticsearch.template。根据您的具体需求,修改模板中的参数,如实例类型、Elasticsearch 集群配置等。 -
部署 CloudFormation 堆栈
使用 AWS Management Console、AWS CLI 或其他工具部署 CloudFormation 堆栈。以下是一个使用 AWS CLI 的示例命令:
aws cloudformation create-stack --stack-name MyStack --template-body file://configuration/cloudformation/cwl-elasticsearch.template --capabilities CAPABILITY_IAM请确保替换
MyStack为您的堆栈名称,并根据需要调整模板文件的路径。 -
验证安装
一旦 CloudFormation 堆栈创建完成,导航到 Outputs 选项卡以获取 Elasticsearch 和 Kibana 的 URL。使用这些 URL 访问 Elasticsearch 集群和 Kibana 仪表板,验证安装是否成功。
以上就是 cloudwatch-logs-subscription-consumer 的安装和配置教程。按照上述步骤操作,您应该能够成功部署该项目并开始使用它来处理您的 Amazon CloudWatch Logs 数据。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00