cloudwatch-logs-subscription-consumer 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
cloudwatch-logs-subscription-consumer 是一个开源项目,它基于 Amazon Kinesis Connector Library 开发,用于将 Amazon CloudWatch Logs 的数据实时传输到其他系统中。该项目提供了一个专门化的 Amazon Kinesis stream reader,可以帮助用户通过 CloudWatch Logs Subscription Filter 实现数据的实时传输。当前版本支持 Elasticsearch 和 Amazon S3 作为内置的连接器,同时也支持通过 Amazon Kinesis Connector Library 框架扩展支持其他目的地。
该项目的主要编程语言是 Java。
2. 项目使用的关键技术和框架
- Amazon Kinesis Connector Library: 用于处理 Amazon Kinesis 数据流的一个开源库。
- Elasticsearch: 一个分布式、RESTful 搜索和分析引擎,适用于处理大量的数据。
- Amazon S3: Amazon 的简单存储服务,用于存储和检索任意数量的数据。
- CloudFormation: Amazon Web Services 提供的一种基础设施即代码服务,可以用来创建和管理 AWS 资源。
- Kibana: 一个开源的数据可视化和分析工具,常与 Elasticsearch 一起使用。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装前,请确保您已经满足以下条件:
- 安装了 Java 开发环境。
- 安装了 Maven,用于构建和管理 Java 项目。
- 具有访问 AWS 服务(如 CloudWatch Logs、Kinesis、EC2、S3 等)的权限。
- 创建了一个 AWS CloudWatch Logs 组,并配置了相关的日志数据。
安装步骤
-
克隆项目仓库
打开终端或命令提示符,执行以下命令以克隆项目仓库:
git clone https://github.com/amazon-archives/cloudwatch-logs-subscription-consumer.git -
构建项目
进入项目目录,使用 Maven 构建项目:
cd cloudwatch-logs-subscription-consumer mvn clean install -
配置 CloudFormation 模板
在项目目录中,有一个 CloudFormation 模板文件
configuration/cloudformation/cwl-elasticsearch.template。根据您的具体需求,修改模板中的参数,如实例类型、Elasticsearch 集群配置等。 -
部署 CloudFormation 堆栈
使用 AWS Management Console、AWS CLI 或其他工具部署 CloudFormation 堆栈。以下是一个使用 AWS CLI 的示例命令:
aws cloudformation create-stack --stack-name MyStack --template-body file://configuration/cloudformation/cwl-elasticsearch.template --capabilities CAPABILITY_IAM请确保替换
MyStack为您的堆栈名称,并根据需要调整模板文件的路径。 -
验证安装
一旦 CloudFormation 堆栈创建完成,导航到 Outputs 选项卡以获取 Elasticsearch 和 Kibana 的 URL。使用这些 URL 访问 Elasticsearch 集群和 Kibana 仪表板,验证安装是否成功。
以上就是 cloudwatch-logs-subscription-consumer 的安装和配置教程。按照上述步骤操作,您应该能够成功部署该项目并开始使用它来处理您的 Amazon CloudWatch Logs 数据。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00