TensorRT 8.6.1在NVIDIA GeForce RTX 3060上构建引擎时的内存泄漏问题分析
2025-05-20 04:15:15作者:龚格成
问题背景
在使用TensorRT 8.6.1版本将ONNX模型转换为TensorRT引擎时,开发者遇到了一个严重的内存泄漏问题。当在NVIDIA GeForce RTX 3060显卡上运行tensorrt.Builder.build_serialized_network
方法时,系统内存会逐渐被耗尽,最终导致进程崩溃。这个问题在64GB内存的机器上需要数小时才会显现。
模型结构分析
出现问题的模型是一个简单的遍历性计算模型,主要包含以下关键操作:
- 使用
torch.where
进行条件选择 - 通过
torch.minimum
进行最小值计算 - 包含两个嵌套循环结构,循环次数为MAX_TRAV*2+1
- 使用
torch.cat
进行张量拼接
模型的核心算法是通过迭代计算来传播障碍物信息,最终输出每个位置到最近障碍物的距离。这种算法在机器人路径规划和计算机视觉中较为常见。
问题复现环境
- TensorRT版本:8.6.1
- GPU型号:NVIDIA GeForce RTX 3060
- 驱动程序版本:550.54.14
- CUDA版本:12.4
- cuDNN版本:8.9.7
- 操作系统:Debian 11
- Python版本:3.9.2
- PyTorch版本:2.2.1+cu121
问题表现
- 内存使用量随时间持续增长,最终耗尽系统64GB内存
- 模型转换过程极其缓慢,即使简化后也需要约10分钟
- 转换过程中显存占用高达1.5GB
- 原始模型存在类型不匹配问题(int64和int32),修复后问题依然存在
技术分析
经过深入分析,这个问题可能由以下几个因素导致:
- 循环结构处理:模型中的循环结构可能导致TensorRT优化器进入无限优化循环
- 内存管理缺陷:TensorRT 8.6.1版本在构建引擎时可能存在内存释放不及时的问题
- 张量拼接操作:频繁的
torch.cat
操作可能触发TensorRT内部的内存分配异常
解决方案
NVIDIA官方已确认此问题并提交了内部bug报告(编号4601836)。根据官方回复,该问题已在最新小版本更新中得到修复。建议用户采取以下措施:
- 升级到TensorRT的最新稳定版本
- 对于必须使用8.6.1版本的用户,可以尝试以下临时解决方案:
- 限制模型输入尺寸
- 减少循环次数
- 增加内存监控,在内存达到阈值时重启进程
最佳实践建议
- 在模型转换前,先使用ONNX Runtime验证模型有效性
- 对于包含循环结构的模型,建议先在小规模输入上测试转换性能
- 监控转换过程中的内存使用情况,设置合理的超时机制
- 考虑将复杂循环结构拆分为多个子图,降低转换复杂度
总结
TensorRT作为高性能推理引擎,在大多数情况下表现优异,但在处理特定模型结构时仍可能出现问题。开发者在使用过程中应当注意监控系统资源使用情况,并及时更新到稳定版本以获得最佳体验和性能。对于类似的内存泄漏问题,保持与官方社区的沟通并及时反馈是解决问题的有效途径。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0