使用patchwork包整合pheatmap热图的技术指南
问题背景
在生物信息学分析中,我们经常需要比较不同实验组之间的基因表达模式差异。pheatmap是一个常用的R包,用于生成高质量的热图可视化结果。而patchwork是一个强大的R包,专门用于组合和排列多个ggplot2图形。然而,当尝试将pheatmap生成的热图与patchwork结合使用时,可能会遇到一些技术挑战。
核心问题分析
pheatmap基于基础图形系统(base graphics)构建,而patchwork主要设计用于处理ggplot2对象。这种底层图形系统的差异导致直接使用wrap_elements()函数包装pheatmap输出时会出现兼容性问题。
解决方案
方法一:提取gtable对象
pheatmap实际上在内部使用了grid图形系统,并生成了一个gtable对象。我们可以直接提取这个对象用于patchwork的组合:
plist <- lapply(comps, function(i) {
# ...前面的数据处理代码...
p <- pheatmap(
-log10(getMatrix(gom, name = 'pval')),
cluster_rows = FALSE,
cluster_cols = FALSE,
main = paste(i[1], "vs", i[2])
return(p$gtable)
})
wrap_plots(plist) + plot_layout(nrow = 2)
方法二:转换为ggplot对象
另一种方法是将pheatmap的输出转换为ggplot对象:
plist <- lapply(comps, function(i) {
# ...前面的数据处理代码...
p <- as.ggplot(pheatmap(
-log10(getMatrix(gom, name = 'pval')),
cluster_rows = FALSE,
cluster_cols = FALSE,
main = paste(i[1], "vs", i[2]))
)
return(p)
})
wrap_plots(plist) + plot_layout(nrow = 2)
技术细节解析
-
图形系统差异:R中有多种图形系统,包括基础图形、grid和ggplot2。pheatmap主要使用grid系统,而patchwork是为ggplot2设计的。
-
gtable结构:gtable是grid系统中的一个重要数据结构,它保存了图形的所有布局和绘制信息。pheatmap生成的gtable可以直接被patchwork识别和处理。
-
转换过程:当使用as.ggplot()函数时,实际上是将grid图形转换为ggplot2兼容的格式,这使得patchwork能够正确处理这些图形。
最佳实践建议
-
对于简单的热图组合,直接提取gtable是最有效的方法。
-
如果需要更复杂的布局或与其他ggplot2图形的组合,考虑使用as.ggplot()转换。
-
在组合多个热图时,确保它们具有相似的颜色标度,以便于比较。
-
考虑使用patchwork的tag功能为每个子图添加标签,提高可读性。
总结
通过理解不同图形系统之间的差异,并利用pheatmap和patchwork提供的接口功能,我们可以有效地解决热图组合中的技术难题。这种技术组合特别适用于需要同时展示多组比较结果的生物信息学分析场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00