首页
/ 使用patchwork包整合pheatmap热图的技术指南

使用patchwork包整合pheatmap热图的技术指南

2025-06-30 08:51:28作者:柯茵沙

问题背景

在生物信息学分析中,我们经常需要比较不同实验组之间的基因表达模式差异。pheatmap是一个常用的R包,用于生成高质量的热图可视化结果。而patchwork是一个强大的R包,专门用于组合和排列多个ggplot2图形。然而,当尝试将pheatmap生成的热图与patchwork结合使用时,可能会遇到一些技术挑战。

核心问题分析

pheatmap基于基础图形系统(base graphics)构建,而patchwork主要设计用于处理ggplot2对象。这种底层图形系统的差异导致直接使用wrap_elements()函数包装pheatmap输出时会出现兼容性问题。

解决方案

方法一:提取gtable对象

pheatmap实际上在内部使用了grid图形系统,并生成了一个gtable对象。我们可以直接提取这个对象用于patchwork的组合:

plist <- lapply(comps, function(i) {
  # ...前面的数据处理代码...
  p <- pheatmap(
    -log10(getMatrix(gom, name = 'pval')), 
    cluster_rows = FALSE, 
    cluster_cols = FALSE,
    main = paste(i[1], "vs", i[2])
  return(p$gtable)
})
wrap_plots(plist) + plot_layout(nrow = 2)

方法二:转换为ggplot对象

另一种方法是将pheatmap的输出转换为ggplot对象:

plist <- lapply(comps, function(i) {
  # ...前面的数据处理代码...
  p <- as.ggplot(pheatmap(
    -log10(getMatrix(gom, name = 'pval')), 
    cluster_rows = FALSE, 
    cluster_cols = FALSE,
    main = paste(i[1], "vs", i[2]))
  )
  return(p)
})
wrap_plots(plist) + plot_layout(nrow = 2)

技术细节解析

  1. 图形系统差异:R中有多种图形系统,包括基础图形、grid和ggplot2。pheatmap主要使用grid系统,而patchwork是为ggplot2设计的。

  2. gtable结构:gtable是grid系统中的一个重要数据结构,它保存了图形的所有布局和绘制信息。pheatmap生成的gtable可以直接被patchwork识别和处理。

  3. 转换过程:当使用as.ggplot()函数时,实际上是将grid图形转换为ggplot2兼容的格式,这使得patchwork能够正确处理这些图形。

最佳实践建议

  1. 对于简单的热图组合,直接提取gtable是最有效的方法。

  2. 如果需要更复杂的布局或与其他ggplot2图形的组合,考虑使用as.ggplot()转换。

  3. 在组合多个热图时,确保它们具有相似的颜色标度,以便于比较。

  4. 考虑使用patchwork的tag功能为每个子图添加标签,提高可读性。

总结

通过理解不同图形系统之间的差异,并利用pheatmap和patchwork提供的接口功能,我们可以有效地解决热图组合中的技术难题。这种技术组合特别适用于需要同时展示多组比较结果的生物信息学分析场景。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
507
43
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
336
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70