ASP.NET Extensions 中自定义 AIContent 类型的 Native AOT 序列化问题解析
2025-06-27 07:09:50作者:蔡怀权
在开发基于 ASP.NET Extensions 的 AI 抽象层实现时,特别是针对 Gemini 服务的集成过程中,开发者可能会遇到自定义 AIContent 派生类型在 Native AOT 编译环境下无法正确序列化的问题。本文将深入分析这一问题的技术背景、解决方案及其实现原理。
问题背景
当开发者尝试扩展 Microsoft.Extensions.AI.Abstractions 功能时,通常会创建自定义的 AIContent 派生类型。例如,为 Gemini 服务实现代码解释器工具支持时,需要创建 ExecutableCodeContent 和 CodeExecutionContent 等类型来封装代码执行结果。
在常规的 CLR 环境下,这些自定义类型能够通过反射机制正常序列化。然而,当应用采用 Native AOT 编译或进行程序集裁剪时,反射机制不可用,必须依赖源生成(Source Generation)技术来实现 JSON 序列化。
技术挑战
Native AOT 环境下的主要挑战在于:
- 默认的 AIJsonUtilities.DefaultOptions 会根据运行时环境自动切换行为
- 在 AOT 环境下,它使用仅限于当前程序集内类型的源生成契约
- 任何扩展类型都需要显式进行源生成并添加到解析器链中
解决方案演进
初始方案
开发者最初尝试的方案是:
var options = new JsonSerializerOptions(AIJsonUtilities.DefaultOptions)
{
TypeInfoResolver = JsonTypeInfoResolver.Combine(
JsonContext.Default,
AIJsonUtilities.DefaultOptions.TypeInfoResolver
)
};
这种方案在理论上应该可行,但在实践中遇到了类型解析顺序问题。
正确实现
经过验证,正确的实现方式需要注意以下几点:
- 必须先配置 TypeInfoResolver 链
- 然后再注册自定义 AIContent 类型
- 必须确保源生成上下文包含所有自定义类型
最终的工作代码如下:
var options = new JsonSerializerOptions(AIJsonUtilities.DefaultOptions);
// 先配置解析器链
options.TypeInfoResolver = JsonTypeInfoResolver.Combine(
JsonContext.Default,
AIJsonUtilities.DefaultOptions.TypeInfoResolver
);
// 后注册自定义类型
options.AddAIContentType<ExecutableCodeContent>("executable_code");
options.AddAIContentType<CodeExecutionContent>("code_execution");
// 源生成上下文定义
[JsonSerializable(typeof(ExecutableCodeContent))]
[JsonSerializable(typeof(CodeExecutionContent))]
partial class JsonContext : JsonSerializerContext;
技术原理
这一解决方案背后的关键技术点包括:
- 解析器链顺序:JsonTypeInfoResolver.Combine 创建的是不可变实例,避免了循环引用问题
- 源生成机制:在 AOT 环境下为特定类型生成静态序列化代码
- 多态类型处理:通过 AddAIContentType 注册派生类型与鉴别器的映射关系
最佳实践建议
基于这一问题的解决经验,我们建议开发者在处理类似场景时:
- 始终先配置解析器链再注册自定义类型
- 为所有自定义 AIContent 派生类型创建源生成上下文
- 在 Native AOT 环境下进行充分测试
- 注意解析器链的组合顺序可能影响类型解析结果
通过遵循这些实践,开发者可以确保自定义 AI 内容类型在各种运行时环境下都能正确序列化,为 AI 服务集成提供可靠的基础设施支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218