ASP.NET Extensions 中自定义 AIContent 类型的 Native AOT 序列化问题解析
2025-06-27 07:12:04作者:蔡怀权
在开发基于 ASP.NET Extensions 的 AI 抽象层实现时,特别是针对 Gemini 服务的集成过程中,开发者可能会遇到自定义 AIContent 派生类型在 Native AOT 编译环境下无法正确序列化的问题。本文将深入分析这一问题的技术背景、解决方案及其实现原理。
问题背景
当开发者尝试扩展 Microsoft.Extensions.AI.Abstractions 功能时,通常会创建自定义的 AIContent 派生类型。例如,为 Gemini 服务实现代码解释器工具支持时,需要创建 ExecutableCodeContent 和 CodeExecutionContent 等类型来封装代码执行结果。
在常规的 CLR 环境下,这些自定义类型能够通过反射机制正常序列化。然而,当应用采用 Native AOT 编译或进行程序集裁剪时,反射机制不可用,必须依赖源生成(Source Generation)技术来实现 JSON 序列化。
技术挑战
Native AOT 环境下的主要挑战在于:
- 默认的 AIJsonUtilities.DefaultOptions 会根据运行时环境自动切换行为
 - 在 AOT 环境下,它使用仅限于当前程序集内类型的源生成契约
 - 任何扩展类型都需要显式进行源生成并添加到解析器链中
 
解决方案演进
初始方案
开发者最初尝试的方案是:
var options = new JsonSerializerOptions(AIJsonUtilities.DefaultOptions)
{
    TypeInfoResolver = JsonTypeInfoResolver.Combine(
        JsonContext.Default,
        AIJsonUtilities.DefaultOptions.TypeInfoResolver
    )
};
这种方案在理论上应该可行,但在实践中遇到了类型解析顺序问题。
正确实现
经过验证,正确的实现方式需要注意以下几点:
- 必须先配置 TypeInfoResolver 链
 - 然后再注册自定义 AIContent 类型
 - 必须确保源生成上下文包含所有自定义类型
 
最终的工作代码如下:
var options = new JsonSerializerOptions(AIJsonUtilities.DefaultOptions);
// 先配置解析器链
options.TypeInfoResolver = JsonTypeInfoResolver.Combine(
    JsonContext.Default,
    AIJsonUtilities.DefaultOptions.TypeInfoResolver
);
// 后注册自定义类型
options.AddAIContentType<ExecutableCodeContent>("executable_code");
options.AddAIContentType<CodeExecutionContent>("code_execution");
// 源生成上下文定义
[JsonSerializable(typeof(ExecutableCodeContent))]
[JsonSerializable(typeof(CodeExecutionContent))]
partial class JsonContext : JsonSerializerContext;
技术原理
这一解决方案背后的关键技术点包括:
- 解析器链顺序:JsonTypeInfoResolver.Combine 创建的是不可变实例,避免了循环引用问题
 - 源生成机制:在 AOT 环境下为特定类型生成静态序列化代码
 - 多态类型处理:通过 AddAIContentType 注册派生类型与鉴别器的映射关系
 
最佳实践建议
基于这一问题的解决经验,我们建议开发者在处理类似场景时:
- 始终先配置解析器链再注册自定义类型
 - 为所有自定义 AIContent 派生类型创建源生成上下文
 - 在 Native AOT 环境下进行充分测试
 - 注意解析器链的组合顺序可能影响类型解析结果
 
通过遵循这些实践,开发者可以确保自定义 AI 内容类型在各种运行时环境下都能正确序列化,为 AI 服务集成提供可靠的基础设施支持。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446