PaddleX项目在昇腾NPU上的版面解析模型支持分析
背景介绍
PaddleX作为飞桨生态中的重要组件,为开发者提供了便捷的模型训练和部署能力。其中,PP-StructureV3作为文档版面分析的重要模型,在实际业务场景中有着广泛应用。本文将重点分析该模型在昇腾300I Duo NPU上的支持情况。
昇腾NPU推理支持现状
根据实际测试验证,目前PaddleX中的通用OCR模型已经能够在昇腾300I Duo上顺利运行。这得益于昇腾NPU对ONNX模型格式的良好支持,开发者可以按照官方文档将Paddle模型转换为ONNX格式后部署。
PP-StructureV3模型支持情况
对于PP-StructureV3版面解析模型,当前存在以下技术细节需要注意:
-
模型组件支持差异:PP-StructureV3由多个子模型组成,其中部分模型尚不支持直接转换为昇腾OM格式进行推理。
-
替代方案:对于不支持OM格式的子模型,可以采用ONNX运行时作为替代方案。虽然性能可能略低于原生OM推理,但仍能保证功能完整性。
-
模型转换建议:开发者需要按照官方文档手动转换模型,特别注意不同子模型可能需要采用不同的转换策略。
技术实现建议
针对昇腾NPU部署PP-StructureV3,建议采用以下技术路线:
-
混合推理模式:将支持OM格式的子模型转换为OM进行高性能推理,不支持的部分保持ONNX格式。
-
性能优化:对于ONNX推理部分,可以通过图优化、算子融合等技术提升推理效率。
-
内存管理:注意NPU和CPU之间的内存交换开销,合理安排模型部署位置。
未来展望
随着昇腾NPU生态的不断完善,预计未来PP-StructureV3的所有组件都将获得完整的OM格式支持。开发者可以持续关注PaddleX和昇腾社区的更新动态,及时获取最新的部署方案和技术支持。
总结
PaddleX项目在昇腾300I Duo NPU上已经实现了对通用OCR模型的良好支持,而对于PP-StructureV3版面解析模型,目前可采用混合推理方案实现功能部署。开发者需要根据实际业务需求,权衡性能和功能完整性,选择合适的部署策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00