PaddleX项目在昇腾NPU上的版面解析模型支持分析
背景介绍
PaddleX作为飞桨生态中的重要组件,为开发者提供了便捷的模型训练和部署能力。其中,PP-StructureV3作为文档版面分析的重要模型,在实际业务场景中有着广泛应用。本文将重点分析该模型在昇腾300I Duo NPU上的支持情况。
昇腾NPU推理支持现状
根据实际测试验证,目前PaddleX中的通用OCR模型已经能够在昇腾300I Duo上顺利运行。这得益于昇腾NPU对ONNX模型格式的良好支持,开发者可以按照官方文档将Paddle模型转换为ONNX格式后部署。
PP-StructureV3模型支持情况
对于PP-StructureV3版面解析模型,当前存在以下技术细节需要注意:
-
模型组件支持差异:PP-StructureV3由多个子模型组成,其中部分模型尚不支持直接转换为昇腾OM格式进行推理。
-
替代方案:对于不支持OM格式的子模型,可以采用ONNX运行时作为替代方案。虽然性能可能略低于原生OM推理,但仍能保证功能完整性。
-
模型转换建议:开发者需要按照官方文档手动转换模型,特别注意不同子模型可能需要采用不同的转换策略。
技术实现建议
针对昇腾NPU部署PP-StructureV3,建议采用以下技术路线:
-
混合推理模式:将支持OM格式的子模型转换为OM进行高性能推理,不支持的部分保持ONNX格式。
-
性能优化:对于ONNX推理部分,可以通过图优化、算子融合等技术提升推理效率。
-
内存管理:注意NPU和CPU之间的内存交换开销,合理安排模型部署位置。
未来展望
随着昇腾NPU生态的不断完善,预计未来PP-StructureV3的所有组件都将获得完整的OM格式支持。开发者可以持续关注PaddleX和昇腾社区的更新动态,及时获取最新的部署方案和技术支持。
总结
PaddleX项目在昇腾300I Duo NPU上已经实现了对通用OCR模型的良好支持,而对于PP-StructureV3版面解析模型,目前可采用混合推理方案实现功能部署。开发者需要根据实际业务需求,权衡性能和功能完整性,选择合适的部署策略。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00