Scanpy项目中的Visium多组学数据读取功能演进
在单细胞和空间转录组分析领域,10x Genomics的Visium技术已经成为研究组织空间基因表达的重要工具。随着技术的进步,Visium平台已经发展出支持多组学数据采集的能力,特别是通过CytAssist技术实现的蛋白质表达检测。这一技术进步对数据分析工具提出了新的要求。
Visium多组学数据的挑战
传统的Visium数据分析主要关注基因表达数据(GEX),但随着CytAssist Visium技术的应用,研究人员现在可以同时获取蛋白质表达数据(通过抗体捕获技术)和基因表达数据。这种多模态数据的出现使得原有的数据分析流程需要进行相应调整。
在Scanpy的早期版本中,read_visium()函数主要针对基因表达数据进行优化,其核心参数gex_only默认为True,这意味着它会自动过滤掉非基因表达特征。虽然可以通过设置gex_only=False来保留所有特征,但函数并未针对蛋白质表达数据做特殊处理,导致在多组学数据分析中存在一定局限性。
功能演进与最佳实践
随着Scanpy生态系统的发展,开发团队做出了一个重要的架构决策:将Visium数据相关的功能迁移至专门处理空间数据的Squidpy库中。这一变化在Scanpy 1.11.0版本中正式实施,标志着空间转录组分析工具的专业化分工。
新的实现方案中,Squidpy的read.visium()函数提供了更完善的多组学数据支持。该函数不仅能够正确处理基因表达和蛋白质表达数据的混合矩阵,还能更好地处理相关的空间信息和图像数据。对于同时包含RNA和蛋白质数据的Visium实验,Squidpy提供了更灵活的数据结构和更高效的处理流程。
迁移建议与注意事项
对于正在使用Scanpy分析Visium多组学数据的研究人员,建议考虑以下迁移路径:
- 将现有的
scanpy.read_visium()调用替换为squidpy.read.visium() - 检查参数设置,特别是与多组学数据相关的选项
- 验证数据加载结果,确保所有特征类型(基因和蛋白质)都被正确保留
- 更新可视化代码,使用Squidpy提供的空间绘图函数
这一架构调整反映了单细胞和空间组学分析工具生态系统的成熟,通过专业化分工,不同工具可以更专注于特定领域的功能开发,最终为用户提供更强大、更专业的数据分析体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00