首页
/ Scanpy项目中的Visium多组学数据读取功能演进

Scanpy项目中的Visium多组学数据读取功能演进

2025-07-04 21:26:30作者:牧宁李

在单细胞和空间转录组分析领域,10x Genomics的Visium技术已经成为研究组织空间基因表达的重要工具。随着技术的进步,Visium平台已经发展出支持多组学数据采集的能力,特别是通过CytAssist技术实现的蛋白质表达检测。这一技术进步对数据分析工具提出了新的要求。

Visium多组学数据的挑战

传统的Visium数据分析主要关注基因表达数据(GEX),但随着CytAssist Visium技术的应用,研究人员现在可以同时获取蛋白质表达数据(通过抗体捕获技术)和基因表达数据。这种多模态数据的出现使得原有的数据分析流程需要进行相应调整。

在Scanpy的早期版本中,read_visium()函数主要针对基因表达数据进行优化,其核心参数gex_only默认为True,这意味着它会自动过滤掉非基因表达特征。虽然可以通过设置gex_only=False来保留所有特征,但函数并未针对蛋白质表达数据做特殊处理,导致在多组学数据分析中存在一定局限性。

功能演进与最佳实践

随着Scanpy生态系统的发展,开发团队做出了一个重要的架构决策:将Visium数据相关的功能迁移至专门处理空间数据的Squidpy库中。这一变化在Scanpy 1.11.0版本中正式实施,标志着空间转录组分析工具的专业化分工。

新的实现方案中,Squidpy的read.visium()函数提供了更完善的多组学数据支持。该函数不仅能够正确处理基因表达和蛋白质表达数据的混合矩阵,还能更好地处理相关的空间信息和图像数据。对于同时包含RNA和蛋白质数据的Visium实验,Squidpy提供了更灵活的数据结构和更高效的处理流程。

迁移建议与注意事项

对于正在使用Scanpy分析Visium多组学数据的研究人员,建议考虑以下迁移路径:

  1. 将现有的scanpy.read_visium()调用替换为squidpy.read.visium()
  2. 检查参数设置,特别是与多组学数据相关的选项
  3. 验证数据加载结果,确保所有特征类型(基因和蛋白质)都被正确保留
  4. 更新可视化代码,使用Squidpy提供的空间绘图函数

这一架构调整反映了单细胞和空间组学分析工具生态系统的成熟,通过专业化分工,不同工具可以更专注于特定领域的功能开发,最终为用户提供更强大、更专业的数据分析体验。

登录后查看全文
热门项目推荐
相关项目推荐