Harvester v1.5.0开发版发布:虚拟化与云原生融合的新进展
项目概述
Harvester是一个开源的超融合基础设施(HCI)解决方案,它将虚拟化与云原生技术完美结合。作为一个基于Kubernetes构建的现代化HCI平台,Harvester提供了完整的虚拟机管理能力,同时继承了云原生生态系统的灵活性和扩展性。该项目由Rancher团队开发,旨在为企业和开发者提供简单易用、功能强大的基础设施管理工具。
最新开发版特性解析
本次发布的v1.5.0-dev-20250120版本作为开发测试版,带来了多项重要改进和新功能,虽然不建议在生产环境使用,但展示了Harvester未来的发展方向。
核心架构优化
-
Kubernetes版本兼容性增强:修复了harvester-cloud-provider组件中的kube-version约束问题,确保与更广泛的Kubernetes版本兼容。
-
存储控制器部署优化:Harvester CSI Driver Controller现在只会部署在控制平面节点上,这一改变提高了存储组件的可靠性和资源利用率。
-
磁盘空间管理改进:修复了磁盘空间检查机制,现在能够正确识别并遵守harvesterhci.io/minFreeDiskSpaceGB配置的最小磁盘空间设置。
虚拟机管理增强
-
TPM设备支持:新增了虚拟机持久性TPM(可信平台模块)支持,为需要更高安全性的工作负载提供了硬件级的安全保障。
-
USB设备迁移限制:修复了USB设备使用虚拟机的迁移选项问题,现在系统会正确识别USB设备并限制不适当的迁移操作。
-
热插拔卷维护模式处理:解决了当节点进入维护模式时,热插拔卷可能出现的IOError问题,提高了虚拟机存储的可靠性。
网络功能改进
-
DHCP模式VIP支持:安装程序现在支持在DHCP模式下为VIP(虚拟IP)指定MAC地址,增强了网络配置的灵活性。
-
集群CIDR默认值调整:修改了默认的cluster-cidr设置,更好地适应不同规模的部署场景。
技术预览功能
本次版本继续提供了ARM64架构的技术预览支持,包括完整的ISO镜像和启动组件,为异构计算环境提供了更多可能性。
使用建议与注意事项
虽然这个开发版带来了许多令人期待的功能改进,但需要注意以下几点:
-
此版本仅用于测试目的,不建议在生产环境使用。
-
从旧版本升级或未来升级到新版本可能不受支持。
-
用户在使用过程中遇到的任何问题都可以反馈给开发团队。
-
对于测试环境,建议关注磁盘空间管理、TPM支持和网络配置方面的改进。
总结
Harvester v1.5.0-dev-20250120开发版展示了项目在虚拟化与云原生融合道路上的持续进步。从核心架构优化到具体功能增强,这个版本为未来的稳定版奠定了重要基础。特别是安全相关的TPM支持和网络配置的灵活性提升,体现了Harvester对现代基础设施需求的深刻理解。随着项目的不断发展,Harvester有望成为开源HCI解决方案中的重要选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00