Harvester v1.5.0开发版发布:虚拟化与云原生融合的新进展
项目概述
Harvester是一个开源的超融合基础设施(HCI)解决方案,它将虚拟化与云原生技术完美结合。作为一个基于Kubernetes构建的现代化HCI平台,Harvester提供了完整的虚拟机管理能力,同时继承了云原生生态系统的灵活性和扩展性。该项目由Rancher团队开发,旨在为企业和开发者提供简单易用、功能强大的基础设施管理工具。
最新开发版特性解析
本次发布的v1.5.0-dev-20250120版本作为开发测试版,带来了多项重要改进和新功能,虽然不建议在生产环境使用,但展示了Harvester未来的发展方向。
核心架构优化
-
Kubernetes版本兼容性增强:修复了harvester-cloud-provider组件中的kube-version约束问题,确保与更广泛的Kubernetes版本兼容。
-
存储控制器部署优化:Harvester CSI Driver Controller现在只会部署在控制平面节点上,这一改变提高了存储组件的可靠性和资源利用率。
-
磁盘空间管理改进:修复了磁盘空间检查机制,现在能够正确识别并遵守harvesterhci.io/minFreeDiskSpaceGB配置的最小磁盘空间设置。
虚拟机管理增强
-
TPM设备支持:新增了虚拟机持久性TPM(可信平台模块)支持,为需要更高安全性的工作负载提供了硬件级的安全保障。
-
USB设备迁移限制:修复了USB设备使用虚拟机的迁移选项问题,现在系统会正确识别USB设备并限制不适当的迁移操作。
-
热插拔卷维护模式处理:解决了当节点进入维护模式时,热插拔卷可能出现的IOError问题,提高了虚拟机存储的可靠性。
网络功能改进
-
DHCP模式VIP支持:安装程序现在支持在DHCP模式下为VIP(虚拟IP)指定MAC地址,增强了网络配置的灵活性。
-
集群CIDR默认值调整:修改了默认的cluster-cidr设置,更好地适应不同规模的部署场景。
技术预览功能
本次版本继续提供了ARM64架构的技术预览支持,包括完整的ISO镜像和启动组件,为异构计算环境提供了更多可能性。
使用建议与注意事项
虽然这个开发版带来了许多令人期待的功能改进,但需要注意以下几点:
-
此版本仅用于测试目的,不建议在生产环境使用。
-
从旧版本升级或未来升级到新版本可能不受支持。
-
用户在使用过程中遇到的任何问题都可以反馈给开发团队。
-
对于测试环境,建议关注磁盘空间管理、TPM支持和网络配置方面的改进。
总结
Harvester v1.5.0-dev-20250120开发版展示了项目在虚拟化与云原生融合道路上的持续进步。从核心架构优化到具体功能增强,这个版本为未来的稳定版奠定了重要基础。特别是安全相关的TPM支持和网络配置的灵活性提升,体现了Harvester对现代基础设施需求的深刻理解。随着项目的不断发展,Harvester有望成为开源HCI解决方案中的重要选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00