Sing-box项目中TUN模式下的DNS回环问题解析
问题现象
在Windows 11系统上使用Sing-box的TUN模式时,当配置中使用"local"类型的DNS服务器时,程序启动后会出现大量日志输出,CPU占用率显著升高,同时网页访问出现DNS解析失败的情况。日志显示每秒会产生大量DNS查询请求,主要针对"client-update.example.com"和"dashboard.example.org"等域名。
技术背景
Sing-box是一个功能强大的网络工具,支持多种网络协议和配置方式。TUN模式是其提供的一种虚拟网络接口模式,可以拦截系统网络流量进行处理。在TUN模式下,DNS解析的处理尤为关键,不当的配置容易导致循环解析问题。
问题原因分析
-
DNS回环问题:当配置中使用"local"类型DNS服务器时,实际上是指向系统DNS。在TUN模式下,系统DNS请求会被TUN接口捕获,再次发送到Sing-box处理,形成无限循环。
-
进程识别失败:日志中频繁出现"failed to search process"的提示,表明Sing-box无法正确识别发起DNS请求的进程信息,这可能导致路由规则无法正确应用。
-
自动路由检测问题:默认开启的auto_detect_interface功能可能与某些网络环境不兼容,加剧了DNS查询的异常。
解决方案
-
使用dhcp://类型DNS替代local: 将DNS配置中的"local"类型替换为dhcp://类型,避免直接使用系统DNS造成的回环。
-
添加路由排除规则: 在TUN配置中加入以下路由排除规则,避免私有地址空间的流量被错误处理:
"route_exclude_address": [ "10.0.0.0/8", "172.16.0.0/12", "192.168.0.0/16" ] -
关闭自动接口检测: 在路由配置中关闭auto_detect_interface,并明确指定default_interface:
"auto_detect_interface": false, "default_interface": "以太网" // 根据实际情况修改 -
使用稳定版本: 考虑使用v1.10.5等稳定版本,避免开发版可能存在的未知问题。
配置优化建议
-
DNS服务器分层:
- 对国内域名使用本地ISP提供的DNS
- 对国际域名使用可靠的公共DNS如知名服务商或Google DNS
- 通过规则精确分流不同类型的DNS查询
-
日志级别调整: 生产环境中建议将日志级别调整为info或warn,避免debug级别产生过多日志。
-
性能监控: 部署后应持续监控CPU和内存使用情况,确保配置优化效果。
总结
Sing-box在TUN模式下的DNS配置需要特别注意避免回环问题。通过合理配置DNS服务器类型、路由规则和接口设置,可以有效解决日志暴增和DNS解析失败的问题。理解网络流量的处理流程对于配置优化至关重要,建议用户在修改配置前充分理解各参数的含义和作用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00