Higress项目中基于向量相似度的LLM缓存召回插件设计与实现
2025-06-10 21:23:39作者:廉皓灿Ida
引言
在AI技术快速发展的今天,大型语言模型(LLM)已成为各类应用的核心组件。然而,直接调用LLM提供商API面临着成本高昂、响应延迟等问题。阿里云开源的云原生网关项目Higress通过Wasm插件机制,为解决这一问题提供了创新思路。
技术背景
Higress作为云原生网关,其Wasm插件架构为AI场景提供了独特优势。传统网关主要处理路由和负载均衡,而AI网关需要额外支持API协议转换、结果缓存、智能路由等高级功能。基于向量相似度的缓存召回机制,能够在保证结果质量的前提下显著降低LLM调用成本。
插件核心设计
整体架构
该插件采用三层架构设计:
- 接入层:与LLM Proxy和AI Assistant插件协同工作
- 处理层:实现向量生成、相似度计算和结果召回
- 存储层:支持Redis及其他向量数据库作为后端存储
关键技术实现
向量化处理:插件需要将用户请求和LLM响应转换为向量表示。可采用预训练模型如BERT或Sentence-BERT生成语义向量,确保相似语义的请求能够被正确匹配。
相似度计算:采用余弦相似度或欧氏距离等度量方法,支持可配置的相似度阈值。当新请求与缓存中某条记录的向量相似度超过阈值时,直接返回缓存结果。
缓存策略:实现基于时间、使用频率等多维度的缓存淘汰机制,确保缓存内容的新鲜度和有效性。
性能优化考量
准确率提升:通过以下手段确保召回质量:
- 动态调整相似度阈值
- 支持多维度特征融合(如关键词+语义)
- 实现结果质量评估反馈机制
性能调优:针对Wasm环境特点优化:
- 向量计算采用SIMD指令加速
- 实现批处理机制减少存储访问次数
- 支持异步处理避免阻塞网关主流程
测试验证方案
设计全面的测试用例评估插件效果:
- 功能测试:验证基本缓存和召回流程
- 性能测试:测量不同负载下的吞吐量和延迟
- 质量测试:评估召回结果的准确率和召回率
测试数据集应覆盖不同领域、不同长度的请求,并包含边缘案例(如近义词、反义词、模糊查询等)。
应用场景扩展
该插件技术可应用于:
- 企业知识库问答系统
- 客服机器人场景
- 内容生成类应用
- 多轮对话系统
通过灵活的配置,可以适应不同业务场景对响应质量和成本的不同要求。
未来展望
随着技术发展,该插件可进一步优化:
- 支持更多向量数据库后端
- 实现自适应相似度阈值调整
- 结合LLM自身能力进行结果验证
- 探索联邦学习下的分布式缓存方案
Higress的这一创新为AI应用的高效部署提供了重要基础设施,展现了云原生网关在AI时代的强大扩展能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873