LeetCode 按公司分类题目集教程
本教程将引导您了解并使用由 duanehutchins 维护的名为 leetcode-questions-by-company
的开源项目。该项目整理了 LeetCode 上根据不同公司标签筛选出的编程题目,对于准备技术面试的开发者来说是一份宝贵的资源。
1. 项目介绍
leetcode-questions-by-company
是一个在 GitHub 上托管的开源项目,它致力于收集并分类 LeetCode 中按公司划分的编程挑战题目。这些题目涵盖了各种难度级别,从易于上手的基础算法到高难度的数据结构设计,旨在帮助开发人员针对性地准备特定公司的面试。每个 CSV 文件对应一家公司的题库列表,更新频繁,确保了题目的时效性。
2. 项目快速启动
要开始使用这个项目,您首先需要具备 Git 和一定的命令行基础。以下是简单的步骤:
安装Git (如未安装)
对于 Windows 用户,可以从Git官网下载安装;macOS 用户可以通过Homebrew安装(brew install git
)或直接访问官网。
克隆项目
打开终端或者命令提示符,输入以下命令来克隆仓库到本地:
git clone https://github.com/duanehutchins/leetcode-questions-by-company.git
查看题目列表
克隆完成后,进入项目目录:
cd leetcode-questions-by-company
这里你会看到一系列以公司名称命名的 CSV 文件,例如 google.csv
, facebook.csv
等,每个文件包含了对应的公司面试常考题目ID。
3. 应用案例和最佳实践
- 学习计划制定:根据您的目标公司,选择相应的 CSV 文件,规划每日学习的 LeetCode 题目。
- 团队训练:企业可以利用此资源为内部培训创建定制化的练习计划,提升团队整体技术水平。
- 模拟面试:选取高频率出现的题目进行模拟,熟悉面试流程和压力环境下的解题思路。
示例:选取Google题目清单
假设您正准备Google的面试,可以在 google.csv
文件中找到题目ID,并在 LeetCode 平台上直接搜索这些编号进行练习。
4. 典型生态项目
虽然特定于 leetcode-questions-by-company
的周边工具较少,但开发者社区提供了许多辅助工具和资源,比如自动导入 LeetCode 到本地 IDE 的插件,以及时间复杂度分析工具等。此外,结合如 LeetCode 官方讨论区、论坛和第三方解析网站,可以进一步深化理解每道题目。
通过遵循上述指南,您将能够高效地利用这个项目为即将到来的技术面试做好充分的准备。不断练习和深入了解这些题目背后的算法原理是成功的关键。祝您学习进步,面试顺利!
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









