LeetCode 按公司分类题目集教程
本教程将引导您了解并使用由 duanehutchins 维护的名为 leetcode-questions-by-company
的开源项目。该项目整理了 LeetCode 上根据不同公司标签筛选出的编程题目,对于准备技术面试的开发者来说是一份宝贵的资源。
1. 项目介绍
leetcode-questions-by-company
是一个在 GitHub 上托管的开源项目,它致力于收集并分类 LeetCode 中按公司划分的编程挑战题目。这些题目涵盖了各种难度级别,从易于上手的基础算法到高难度的数据结构设计,旨在帮助开发人员针对性地准备特定公司的面试。每个 CSV 文件对应一家公司的题库列表,更新频繁,确保了题目的时效性。
2. 项目快速启动
要开始使用这个项目,您首先需要具备 Git 和一定的命令行基础。以下是简单的步骤:
安装Git (如未安装)
对于 Windows 用户,可以从Git官网下载安装;macOS 用户可以通过Homebrew安装(brew install git
)或直接访问官网。
克隆项目
打开终端或者命令提示符,输入以下命令来克隆仓库到本地:
git clone https://github.com/duanehutchins/leetcode-questions-by-company.git
查看题目列表
克隆完成后,进入项目目录:
cd leetcode-questions-by-company
这里你会看到一系列以公司名称命名的 CSV 文件,例如 google.csv
, facebook.csv
等,每个文件包含了对应的公司面试常考题目ID。
3. 应用案例和最佳实践
- 学习计划制定:根据您的目标公司,选择相应的 CSV 文件,规划每日学习的 LeetCode 题目。
- 团队训练:企业可以利用此资源为内部培训创建定制化的练习计划,提升团队整体技术水平。
- 模拟面试:选取高频率出现的题目进行模拟,熟悉面试流程和压力环境下的解题思路。
示例:选取Google题目清单
假设您正准备Google的面试,可以在 google.csv
文件中找到题目ID,并在 LeetCode 平台上直接搜索这些编号进行练习。
4. 典型生态项目
虽然特定于 leetcode-questions-by-company
的周边工具较少,但开发者社区提供了许多辅助工具和资源,比如自动导入 LeetCode 到本地 IDE 的插件,以及时间复杂度分析工具等。此外,结合如 LeetCode 官方讨论区、论坛和第三方解析网站,可以进一步深化理解每道题目。
通过遵循上述指南,您将能够高效地利用这个项目为即将到来的技术面试做好充分的准备。不断练习和深入了解这些题目背后的算法原理是成功的关键。祝您学习进步,面试顺利!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









