探索文本识别新高度:FOTS PyTorch实现
2024-09-17 16:46:49作者:曹令琨Iris
项目介绍
FOTS(Fast Oriented Text Spotting)是一个基于PyTorch的开源项目,旨在实现高效的文本检测与识别。该项目不仅提供了完整的代码实现,还支持多种数据集(如ICDAR和SynthText 800K),并且具备多GPU训练、合理的项目结构、以及与wandb和pytorch_lightning的集成。FOTS的核心思想是通过端到端的训练方式,将文本检测与识别两个任务无缝结合,从而在复杂场景中实现高精度的文本定位与识别。
项目技术分析
FOTS项目的技术架构主要分为两个部分:检测分支(detection branch)和识别分支(recognition branch)。检测分支负责在图像中定位文本区域,而识别分支则进一步对这些区域进行文本识别。项目采用了先进的深度学习技术,如ResNet作为骨干网络,并通过ROI Rotate技术处理文本的方向问题。此外,FOTS还支持多尺度评估,能够在不同分辨率下进行模型性能的验证。
项目及技术应用场景
FOTS的应用场景非常广泛,尤其适用于需要高精度文本识别的领域。例如:
- 文档数字化:在文档扫描和OCR(光学字符识别)过程中,FOTS能够高效地识别文档中的文本,提升数字化效率。
- 自动驾驶:在自动驾驶系统中,FOTS可以帮助车辆识别路牌、交通标志等文本信息,增强系统的环境感知能力。
- 安防监控:在视频监控系统中,FOTS可以实时识别监控画面中的文本信息,如车牌号、警示标志等,提升监控系统的智能化水平。
项目特点
- 端到端训练:FOTS通过端到端的训练方式,将文本检测与识别两个任务紧密结合,简化了模型的训练流程,同时提高了识别精度。
- 多数据集支持:项目支持ICDAR和SynthText 800K等多种数据集,用户可以根据需求选择合适的数据集进行训练和评估。
- 多GPU训练:FOTS支持多GPU并行训练,能够显著缩短训练时间,提升模型训练效率。
- 灵活的评估方式:项目支持多尺度评估,用户可以在不同分辨率下评估模型的性能,确保模型在各种场景下的鲁棒性。
- 集成wandb和pytorch_lightning:FOTS集成了wandb和pytorch_lightning,方便用户进行实验管理和模型训练的可视化。
结语
FOTS项目不仅在技术实现上具有先进性,而且在应用场景上也展现了广泛的潜力。无论是学术研究还是工业应用,FOTS都能为用户提供强大的文本识别解决方案。如果你正在寻找一个高效、灵活且易于集成的文本识别工具,FOTS无疑是一个值得尝试的选择。
项目地址:FOTS PyTorch实现
预训练模型下载:Pretrained model (提取码: 68ta)
微调模型下载:Finetuned model (提取码: s38c)
通过FOTS,让我们一起探索文本识别的新高度!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896