UCMCTrack 开源项目使用教程
2024-09-25 20:05:04作者:瞿蔚英Wynne
1. 项目介绍
UCMCTrack 是一个基于统一相机运动补偿(Uniform Camera Motion Compensation)的多目标跟踪(Multi-Object Tracking, MOT)系统。该项目在 AAAI 2024 上发布,旨在通过估计相机参数来实现对移动相机场景下的多目标跟踪。UCMCTrack 不依赖于目标的外观信息,仅通过运动模型和相机参数估计来实现高精度的目标跟踪,特别适用于实时对象跟踪和移动设备上的应用。
UCMCTrack 在 MOT17 数据集上取得了最先进的性能,并且在没有使用任何外观线索的情况下,在 MOT17 数据集上达到了第一名。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统上安装了以下依赖项:
- Python 3.8 或更高版本
- PyTorch 带 CUDA 支持
- Ultralytics 库
安装依赖
pip install -r requirements.txt
下载预训练权重
下载 YOLOv8x 的预训练权重文件 yolov8x.pt
到 pretrained
文件夹。
运行演示
使用以下命令运行演示脚本,该脚本将处理 demo.mp4
视频文件,检测并跟踪视频中的车辆,并将跟踪结果保存到 output
文件夹中。
python demo.py --cam_para demo/cam_para.txt --video demo/demo.mp4
其中,demo/cam_para.txt
是根据单张图像估计的相机参数文件。
3. 应用案例和最佳实践
应用案例
UCMCTrack 特别适用于以下场景:
- 自动驾驶:在自动驾驶系统中,车辆通常配备多个摄像头,UCMCTrack 可以用于实时跟踪其他车辆和行人。
- 监控系统:在监控系统中,摄像头可能会因为安装位置或环境因素而移动,UCMCTrack 可以在这种情况下保持高精度的目标跟踪。
- 无人机跟踪:无人机在飞行过程中,相机视角会不断变化,UCMCTrack 可以用于跟踪地面上的目标。
最佳实践
- 相机参数估计:在使用 UCMCTrack 之前,确保相机参数估计的准确性。可以通过
util/estimate_cam_para.py
工具从单张图像中估计相机参数。 - 性能优化:在实际应用中,可以根据硬件性能调整模型参数,以达到最佳的实时性能。
4. 典型生态项目
UCMCTrack 可以与其他开源项目结合使用,以增强其功能和应用范围:
- YOLOv8:作为目标检测器,YOLOv8 可以与 UCMCTrack 结合使用,提供高精度的目标检测结果。
- DeepSORT:DeepSORT 是一个基于外观和运动信息的多目标跟踪系统,可以与 UCMCTrack 结合使用,提供更全面的目标跟踪解决方案。
- OpenCV:OpenCV 提供了丰富的图像处理和计算机视觉工具,可以用于预处理和后处理 UCMCTrack 的输出结果。
通过结合这些生态项目,UCMCTrack 可以在更广泛的场景中实现高效的多目标跟踪。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1