UCMCTrack 开源项目使用教程
2024-09-25 17:24:21作者:瞿蔚英Wynne
1. 项目介绍
UCMCTrack 是一个基于统一相机运动补偿(Uniform Camera Motion Compensation)的多目标跟踪(Multi-Object Tracking, MOT)系统。该项目在 AAAI 2024 上发布,旨在通过估计相机参数来实现对移动相机场景下的多目标跟踪。UCMCTrack 不依赖于目标的外观信息,仅通过运动模型和相机参数估计来实现高精度的目标跟踪,特别适用于实时对象跟踪和移动设备上的应用。
UCMCTrack 在 MOT17 数据集上取得了最先进的性能,并且在没有使用任何外观线索的情况下,在 MOT17 数据集上达到了第一名。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统上安装了以下依赖项:
- Python 3.8 或更高版本
- PyTorch 带 CUDA 支持
- Ultralytics 库
安装依赖
pip install -r requirements.txt
下载预训练权重
下载 YOLOv8x 的预训练权重文件 yolov8x.pt 到 pretrained 文件夹。
运行演示
使用以下命令运行演示脚本,该脚本将处理 demo.mp4 视频文件,检测并跟踪视频中的车辆,并将跟踪结果保存到 output 文件夹中。
python demo.py --cam_para demo/cam_para.txt --video demo/demo.mp4
其中,demo/cam_para.txt 是根据单张图像估计的相机参数文件。
3. 应用案例和最佳实践
应用案例
UCMCTrack 特别适用于以下场景:
- 自动驾驶:在自动驾驶系统中,车辆通常配备多个摄像头,UCMCTrack 可以用于实时跟踪其他车辆和行人。
- 监控系统:在监控系统中,摄像头可能会因为安装位置或环境因素而移动,UCMCTrack 可以在这种情况下保持高精度的目标跟踪。
- 无人机跟踪:无人机在飞行过程中,相机视角会不断变化,UCMCTrack 可以用于跟踪地面上的目标。
最佳实践
- 相机参数估计:在使用 UCMCTrack 之前,确保相机参数估计的准确性。可以通过
util/estimate_cam_para.py工具从单张图像中估计相机参数。 - 性能优化:在实际应用中,可以根据硬件性能调整模型参数,以达到最佳的实时性能。
4. 典型生态项目
UCMCTrack 可以与其他开源项目结合使用,以增强其功能和应用范围:
- YOLOv8:作为目标检测器,YOLOv8 可以与 UCMCTrack 结合使用,提供高精度的目标检测结果。
- DeepSORT:DeepSORT 是一个基于外观和运动信息的多目标跟踪系统,可以与 UCMCTrack 结合使用,提供更全面的目标跟踪解决方案。
- OpenCV:OpenCV 提供了丰富的图像处理和计算机视觉工具,可以用于预处理和后处理 UCMCTrack 的输出结果。
通过结合这些生态项目,UCMCTrack 可以在更广泛的场景中实现高效的多目标跟踪。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210