UCMCTrack 开源项目使用教程
2024-09-25 16:04:21作者:瞿蔚英Wynne
1. 项目介绍
UCMCTrack 是一个基于统一相机运动补偿(Uniform Camera Motion Compensation)的多目标跟踪(Multi-Object Tracking, MOT)系统。该项目在 AAAI 2024 上发布,旨在通过估计相机参数来实现对移动相机场景下的多目标跟踪。UCMCTrack 不依赖于目标的外观信息,仅通过运动模型和相机参数估计来实现高精度的目标跟踪,特别适用于实时对象跟踪和移动设备上的应用。
UCMCTrack 在 MOT17 数据集上取得了最先进的性能,并且在没有使用任何外观线索的情况下,在 MOT17 数据集上达到了第一名。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统上安装了以下依赖项:
- Python 3.8 或更高版本
- PyTorch 带 CUDA 支持
- Ultralytics 库
安装依赖
pip install -r requirements.txt
下载预训练权重
下载 YOLOv8x 的预训练权重文件 yolov8x.pt 到 pretrained 文件夹。
运行演示
使用以下命令运行演示脚本,该脚本将处理 demo.mp4 视频文件,检测并跟踪视频中的车辆,并将跟踪结果保存到 output 文件夹中。
python demo.py --cam_para demo/cam_para.txt --video demo/demo.mp4
其中,demo/cam_para.txt 是根据单张图像估计的相机参数文件。
3. 应用案例和最佳实践
应用案例
UCMCTrack 特别适用于以下场景:
- 自动驾驶:在自动驾驶系统中,车辆通常配备多个摄像头,UCMCTrack 可以用于实时跟踪其他车辆和行人。
- 监控系统:在监控系统中,摄像头可能会因为安装位置或环境因素而移动,UCMCTrack 可以在这种情况下保持高精度的目标跟踪。
- 无人机跟踪:无人机在飞行过程中,相机视角会不断变化,UCMCTrack 可以用于跟踪地面上的目标。
最佳实践
- 相机参数估计:在使用 UCMCTrack 之前,确保相机参数估计的准确性。可以通过
util/estimate_cam_para.py工具从单张图像中估计相机参数。 - 性能优化:在实际应用中,可以根据硬件性能调整模型参数,以达到最佳的实时性能。
4. 典型生态项目
UCMCTrack 可以与其他开源项目结合使用,以增强其功能和应用范围:
- YOLOv8:作为目标检测器,YOLOv8 可以与 UCMCTrack 结合使用,提供高精度的目标检测结果。
- DeepSORT:DeepSORT 是一个基于外观和运动信息的多目标跟踪系统,可以与 UCMCTrack 结合使用,提供更全面的目标跟踪解决方案。
- OpenCV:OpenCV 提供了丰富的图像处理和计算机视觉工具,可以用于预处理和后处理 UCMCTrack 的输出结果。
通过结合这些生态项目,UCMCTrack 可以在更广泛的场景中实现高效的多目标跟踪。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
456
3.4 K
Ascend Extension for PyTorch
Python
262
292
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
175
64
暂无简介
Dart
707
168
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
React Native鸿蒙化仓库
JavaScript
283
331
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
407
129
openGauss kernel ~ openGauss is an open source relational database management system
C++
164
222