Feapder 1.8.9 自定义下载器实现与问题解析
2025-06-25 03:57:05作者:裴锟轩Denise
在爬虫开发中,经常会遇到需要绕过网站防护机制的情况,其中TLS指纹检测是近年来比较常见的一种防护手段。本文将深入探讨如何在Feapder 1.8.9版本中实现自定义下载器,特别是针对curl_cffi集成的技术实现。
自定义下载器的必要性
传统爬虫使用的请求库如requests、aiohttp等容易被网站通过TLS指纹识别出来。curl_cffi库通过模拟不同浏览器版本的TLS特征,可以有效绕过这种检测机制。Feapder作为一款优秀的Python爬虫框架,提供了自定义下载器的扩展能力,使开发者能够灵活应对各种防护场景。
实现方案
Feapder的自定义下载器需要继承feapder.network.downloader.base.Downloader基类,并实现download方法。以下是完整的实现示例:
from curl_cffi import requests as cffi_requests
import random
# 支持的浏览器特征列表
BROWSER_FEATURES = [
    "edge99", "edge101", "chrome99", "chrome100",
    "chrome101", "chrome104", "chrome107", "chrome110",
    "chrome116", "chrome119", "chrome120", "chrome123",
    "chrome124"
]
from feapder.network.downloader.base import Downloader
from feapder.network.response import Response
class CffiRequestsDownloader(Downloader):
    def download(self, request) -> Response:
        """
        使用curl_cffi库发送请求
        :param request: Feapder请求对象
        :return: Feapder响应对象
        """
        response = cffi_requests.request(
            method=request.method,
            url=request.url,
            impersonate=random.choice(BROWSER_FEATURES),  # 随机选择特征
            **request.requests_kwargs
        )
        return Response(response)
集成到爬虫项目
实现自定义下载器后,需要在爬虫类中通过__custom_setting__指定使用该下载器:
import feapder
class TLSBypassSpider(feapder.AirSpider):
    __custom_setting__ = dict(
        DOWNLOADER="your_module.path.CffiRequestsDownloader"
    )
    def start_requests(self):
        url = "https://tls.browserleaks.com/json"
        yield feapder.Request(url=url, method="GET")
    def parse(self, request, response):
        print(response.text)
常见问题与解决方案
在实现过程中,开发者可能会遇到"cannot schedule new futures after interpreter shutdown"错误。这通常是由于以下原因导致的:
- 线程池关闭问题:curl_cffi内部使用了线程池,当Python解释器开始关闭时,线程池已经停止接受新任务,但仍有请求尝试执行。
 
解决方案包括:
- 确保所有请求在爬虫关闭前完成
 - 适当增加请求超时时间
 - 检查爬虫的线程控制参数
 
- 资源释放顺序:确保在爬虫结束时正确释放所有网络资源。
 
最佳实践建议
- 
特征轮换策略:不要简单随机选择特征,建议实现特征轮换机制,避免短时间内使用过多不同特征。
 - 
异常处理:完善下载器的异常处理逻辑,特别是网络异常和特征不被接受的情况。
 - 
性能优化:考虑复用curl_cffi的会话(Session)对象,减少TCP连接建立的开销。
 - 
日志记录:详细记录使用的特征信息和请求结果,便于问题排查。
 
通过以上实现和优化,开发者可以在Feapder框架中有效集成curl_cffi,成功绕过TLS指纹检测,提升爬虫的稳定性和成功率。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447