Feapder 1.8.9 自定义下载器实现与问题解析
2025-06-25 23:32:06作者:裴锟轩Denise
在爬虫开发中,经常会遇到需要绕过网站防护机制的情况,其中TLS指纹检测是近年来比较常见的一种防护手段。本文将深入探讨如何在Feapder 1.8.9版本中实现自定义下载器,特别是针对curl_cffi集成的技术实现。
自定义下载器的必要性
传统爬虫使用的请求库如requests、aiohttp等容易被网站通过TLS指纹识别出来。curl_cffi库通过模拟不同浏览器版本的TLS特征,可以有效绕过这种检测机制。Feapder作为一款优秀的Python爬虫框架,提供了自定义下载器的扩展能力,使开发者能够灵活应对各种防护场景。
实现方案
Feapder的自定义下载器需要继承feapder.network.downloader.base.Downloader基类,并实现download方法。以下是完整的实现示例:
from curl_cffi import requests as cffi_requests
import random
# 支持的浏览器特征列表
BROWSER_FEATURES = [
"edge99", "edge101", "chrome99", "chrome100",
"chrome101", "chrome104", "chrome107", "chrome110",
"chrome116", "chrome119", "chrome120", "chrome123",
"chrome124"
]
from feapder.network.downloader.base import Downloader
from feapder.network.response import Response
class CffiRequestsDownloader(Downloader):
def download(self, request) -> Response:
"""
使用curl_cffi库发送请求
:param request: Feapder请求对象
:return: Feapder响应对象
"""
response = cffi_requests.request(
method=request.method,
url=request.url,
impersonate=random.choice(BROWSER_FEATURES), # 随机选择特征
**request.requests_kwargs
)
return Response(response)
集成到爬虫项目
实现自定义下载器后,需要在爬虫类中通过__custom_setting__指定使用该下载器:
import feapder
class TLSBypassSpider(feapder.AirSpider):
__custom_setting__ = dict(
DOWNLOADER="your_module.path.CffiRequestsDownloader"
)
def start_requests(self):
url = "https://tls.browserleaks.com/json"
yield feapder.Request(url=url, method="GET")
def parse(self, request, response):
print(response.text)
常见问题与解决方案
在实现过程中,开发者可能会遇到"cannot schedule new futures after interpreter shutdown"错误。这通常是由于以下原因导致的:
- 线程池关闭问题:curl_cffi内部使用了线程池,当Python解释器开始关闭时,线程池已经停止接受新任务,但仍有请求尝试执行。
解决方案包括:
- 确保所有请求在爬虫关闭前完成
- 适当增加请求超时时间
- 检查爬虫的线程控制参数
- 资源释放顺序:确保在爬虫结束时正确释放所有网络资源。
最佳实践建议
-
特征轮换策略:不要简单随机选择特征,建议实现特征轮换机制,避免短时间内使用过多不同特征。
-
异常处理:完善下载器的异常处理逻辑,特别是网络异常和特征不被接受的情况。
-
性能优化:考虑复用curl_cffi的会话(Session)对象,减少TCP连接建立的开销。
-
日志记录:详细记录使用的特征信息和请求结果,便于问题排查。
通过以上实现和优化,开发者可以在Feapder框架中有效集成curl_cffi,成功绕过TLS指纹检测,提升爬虫的稳定性和成功率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120