Feapder 1.8.9 自定义下载器实现与问题解析
2025-06-25 13:54:53作者:裴锟轩Denise
在爬虫开发中,经常会遇到需要绕过网站防护机制的情况,其中TLS指纹检测是近年来比较常见的一种防护手段。本文将深入探讨如何在Feapder 1.8.9版本中实现自定义下载器,特别是针对curl_cffi集成的技术实现。
自定义下载器的必要性
传统爬虫使用的请求库如requests、aiohttp等容易被网站通过TLS指纹识别出来。curl_cffi库通过模拟不同浏览器版本的TLS特征,可以有效绕过这种检测机制。Feapder作为一款优秀的Python爬虫框架,提供了自定义下载器的扩展能力,使开发者能够灵活应对各种防护场景。
实现方案
Feapder的自定义下载器需要继承feapder.network.downloader.base.Downloader基类,并实现download方法。以下是完整的实现示例:
from curl_cffi import requests as cffi_requests
import random
# 支持的浏览器特征列表
BROWSER_FEATURES = [
"edge99", "edge101", "chrome99", "chrome100",
"chrome101", "chrome104", "chrome107", "chrome110",
"chrome116", "chrome119", "chrome120", "chrome123",
"chrome124"
]
from feapder.network.downloader.base import Downloader
from feapder.network.response import Response
class CffiRequestsDownloader(Downloader):
def download(self, request) -> Response:
"""
使用curl_cffi库发送请求
:param request: Feapder请求对象
:return: Feapder响应对象
"""
response = cffi_requests.request(
method=request.method,
url=request.url,
impersonate=random.choice(BROWSER_FEATURES), # 随机选择特征
**request.requests_kwargs
)
return Response(response)
集成到爬虫项目
实现自定义下载器后,需要在爬虫类中通过__custom_setting__指定使用该下载器:
import feapder
class TLSBypassSpider(feapder.AirSpider):
__custom_setting__ = dict(
DOWNLOADER="your_module.path.CffiRequestsDownloader"
)
def start_requests(self):
url = "https://tls.browserleaks.com/json"
yield feapder.Request(url=url, method="GET")
def parse(self, request, response):
print(response.text)
常见问题与解决方案
在实现过程中,开发者可能会遇到"cannot schedule new futures after interpreter shutdown"错误。这通常是由于以下原因导致的:
- 线程池关闭问题:curl_cffi内部使用了线程池,当Python解释器开始关闭时,线程池已经停止接受新任务,但仍有请求尝试执行。
解决方案包括:
- 确保所有请求在爬虫关闭前完成
- 适当增加请求超时时间
- 检查爬虫的线程控制参数
- 资源释放顺序:确保在爬虫结束时正确释放所有网络资源。
最佳实践建议
-
特征轮换策略:不要简单随机选择特征,建议实现特征轮换机制,避免短时间内使用过多不同特征。
-
异常处理:完善下载器的异常处理逻辑,特别是网络异常和特征不被接受的情况。
-
性能优化:考虑复用curl_cffi的会话(Session)对象,减少TCP连接建立的开销。
-
日志记录:详细记录使用的特征信息和请求结果,便于问题排查。
通过以上实现和优化,开发者可以在Feapder框架中有效集成curl_cffi,成功绕过TLS指纹检测,提升爬虫的稳定性和成功率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350