Unsloth项目中日志记录问题的解决方案与实践
2025-05-04 07:14:23作者:翟江哲Frasier
问题背景
在使用Unsloth项目进行模型训练时,开发者遇到了日志记录功能无法正常工作的问题。按照Hugging Face Transformers库的标准配置,设置了logging_dir和log_level等参数,但日志文件并未如预期生成在指定目录中。
标准配置方法
根据Hugging Face Transformers的文档,标准的日志配置应包含以下关键参数:
args = TrainingArguments(
logging_dir = saveFolder+'/log', # 日志目录
log_level = "info", # 日志级别
logging_steps = 1, # 日志记录频率
# 其他训练参数...
)
理论上,这种配置应该会在指定的logging_dir目录下生成训练日志文件。然而在实际使用Unsloth时,这一功能出现了异常。
自定义解决方案
针对日志记录失效的问题,开发者实现了一个自定义的Trainer类,通过重写关键方法实现了可靠的日志记录功能:
class CustomTrainer(SFTTrainer):
def __init__(self, label_weights, **kwargs):
super().__init__(**kwargs)
self.label_weights = label_weights
def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"):
results = super().evaluate(eval_dataset, ignore_keys, metric_key_prefix)
validation_loss = results[f"{metric_key_prefix}_loss"]
lr = self.optimizer.param_groups[0]['lr']
out = f'Step: {self.state.global_step}, Validation Loss: {validation_loss:.4f}, Learning Rate: {lr:.6f}'
with open(logging_dir + '/eval_log.txt', 'a') as logSave:
logSave.write(out + '\n')
return results
def log(self, logs):
super().log(logs)
with open(logging_dir + '/train_log.txt', 'a') as logSave:
logSave.write(str(logs) + '\n')
这个解决方案具有以下特点:
- 双重日志记录:分别记录训练日志(
train_log.txt)和评估日志(eval_log.txt) - 关键信息提取:在评估日志中特别记录了步数、验证损失和学习率等关键训练指标
- 追加写入模式:使用追加模式('a')确保多次训练运行的日志不会被覆盖
实现原理分析
自定义Trainer通过以下机制实现可靠的日志记录:
- 继承与扩展:继承自Unsloth的SFTTrainer类,保持了原有功能的同时添加日志记录
- 方法重写:重写了
evaluate和log两个关键方法,在原有逻辑基础上添加日志记录 - 直接文件操作:绕过框架的日志系统,直接使用Python的文件操作确保日志写入
最佳实践建议
基于这一问题的解决经验,建议在使用Unsloth进行模型训练时:
- 优先考虑自定义日志:当框架内置日志功能不可靠时,自定义实现往往是更稳妥的选择
- 关键指标明确记录:特别记录训练过程中的关键指标,如损失值、学习率等
- 日志格式规范化:采用统一的日志格式,便于后续分析和可视化
- 路径处理要谨慎:确保日志目录存在,必要时添加目录创建代码
总结
日志记录是模型训练过程中不可或缺的调试和监控手段。虽然Unsloth项目可能存在内置日志功能的异常,但通过自定义Trainer类的方式,开发者可以构建出稳定可靠的日志记录系统。这种解决方案不仅解决了当前问题,还提供了更大的灵活性和可控性,值得在类似场景中借鉴使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178